• Title/Summary/Keyword: Korean horticulture

Search Result 3,113, Processing Time 0.03 seconds

Development of n Hydroponic Technique for Fruit Vegetables Using Synthetic Fiber Medium (합성섬유 배지를 이용한 과채류 수경재배 기술 개발)

  • Hwang Yeon-Hyeon;Yoon Hae-Suk;An Chul-Geon;Hwang Hae-Jun;Rho Chi-Woong;Jeong Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.106-113
    • /
    • 2005
  • This study was carried out to develop a novel hydroponic medium far fruit vegetable crops by using waste synthetic fibers. In physical analysis of the synthetic fiber medium (SFM), the bulk density and percent solid phase were lower, while the porosity and water content were greater in comparison with the rockwool slab. The SFM had pH of 6.5 and EC of $0.03dS{\cdot}m^{-1}$ both of which are similar to those of the rockwool slab. The CEC of 0.39me/100mL of the SFM was lower than compared with 3.29me/100mL of the rockwool slab. However, concentrations K, Ca, Mg and Na were slightly higher in the SFM than those in the rockwool slab. The 'Momotaro' tomato crop in the SFM gave comparable plant height, stem diameter, days to first flowering, fruit weight and percent marketable yield as the rockwool slab. In the SFM and in the rockwool slab, mean fiuit weight were 182g and 181g, percent marketable yield were $93.8\%$ and $92.0\%$, respectively. The marketable yield per 10a in the SFM was 12,799 kg, which was $97\%$ of that in the rockwool slab. Growth parameters such as leaf length and width, leaf number, stem diameter and chlorophyll content of an exportable cucumber crop grown in the SFM and the rockwool slab were not different. Fruit weight was greater in the rockwool slab, while percent marketable yield was greater in the SFM. The marketable fruit yield per 10a of 5,062kg in the SFM was $2\%$ greater than that in the rockwool slab. $NO_3$ concentration in nutrient solution during the crop cultivation was higher in the SFM than in the rockwool slab, while concentrations $NH_4$, K, Ca, Mg and $SO_4$ were not different between the two media.

Effects of Packing Materials, tight Condition and Storage Temperature on MAP Storage of Chicon (MAP저장시 포장재 종류, 광의 유무, 및 저장온도가 치콘 저장성에 미치는 영향)

  • Bae Jong Hyang;Park Kuen Woo;Kang Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • The storability of chicon was compared by packing it with PE box, wrap, LDPE (low density polyethylene) film that was 25 and 50um thickness, respectively and storing at 1 and $10^{\circ}C$ under light and dark conditions. The visual quality depending on dehydration was deteriorated at more than $2\%$ weight loss during storage. In packing treatments, chicon packed with PE box lost fresh weight to $3\%\;at\;10^{\circ}C\;and\;2\%\;at\;1^{\circ}C$, while non- penetrated film treatment, wrap, 25 and 50um thickness LDPE film, showed less than $1\%$ weight loss. The carbon dioxide concentration in package was $3\~4\%\;in\;50{\mu}m$ LDPE film at $1^{\circ}C\; and\;25um$ LDPE film at $10^{\circ}C$. The ethylene concentration in 50um LDPE film at $1^{\circ}C\;and\;25{\mu}m$ LDPE film at $10^{\circ}C$ was approximately 0.3 ppm and 0.5 ppm, respectively. Chiton stored in dark condition didn't turn to green, but it fumed green only in 3 days at $10^{\circ}C$ and in 6 days at $1^{\circ}C$ under light condition. The greening of chicon was less, the packing materials was thicker. The chlorophyll content represented the degree of greening showed less at $1^{\circ}C$ then at $10^{\circ}C$. The coefficient of correlation(r) between chlorophyll content and carbon dioxide concentration in package was 0.926 at $1^{\circ}C$ and 0.997 at $10^{\circ}C$. The visual quality except greening of packed chicon was maintained at $1^{\circ}C$ better than $10^{\circ}C$, and it was shown highest grade packed with $50{\mu}m$ LDPE film at $1^{\circ}C$ and packed with 25um LDPE film at $10^{\circ}C$. The vitamin C content in packed chicon was kept higher at $1^{\circ}C$ on storage temperatures, and 25um and 50um LDPE film on packing materials. According to these results, it can be proper condition for storage and marketing of chicon that 50um LDPE film at $1^{\circ}C$ and 25um LDPE film at $10^{\circ}C$. And dark condition is necessary to store chicon because it should turn green under tiny light condition.

Quality Changes of Cherry Tomato with Different Chlorine Dioxide ($ClO_2$) Gas Treatments during Storage (저장 중 이산화염소 가스의 처리 조건에 따른 방울토마토의 품질변화)

  • Choi, Woo Suk;Ahn, Byung Joon;Kim, Young Shik;Kang, Ho-Min;Lee, Jung-Soo;Lee, Youn Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2013
  • The effects of chlorine dioxide gas ($ClO_2$) treatments between high-concentration-short-time and low-concentration-long-time on maintaining the quality of cherry tomatoes (Lycopersicon esculentum Mill. cv 'unicorn') were investigated. Tomatoes were treated with 5 ppm for 10 min and 10 ppm for 3 min as high-concentration-short-time $ClO_2$ gas treatment conditions and 1 ppm for once a day interval in terms of low-concentration-long-time $ClO_2$ gas treatment condition, respectively. After $ClO_2$ gas treatments, tomatoes were storage at 5 and $23^{\circ}C$ for 7 days. Weight loss, changes in tomato color, firmness, soluble solids content, pH, growth of total microorganism, and decay rate were evaluated. On day 7, tomatoes treated with chlorine dioxide gas showed low values of respiratory rate, total microbial growth, and decay rate compared to those of tomato without chlorine dioxide gas treatment. Additionally, tomatoes treated the chlorine dioxide were kept the values of firmness and soluble solids content during storage. However, chlorine dioxide gas treatment on tomatoes had no direct effect on weight loss, pH, and color. Results showed that both $ClO_2$ concentration and treatment time played the important roles for keeping the quality of tomatoes during storage. Tomatoes with chlorine dioxide gas treatment of low-concentration-long-time had more effective values of firmness, the total microbial growth, and decay rate than those with two chlorine dioxide gas treatments of high-concentration-short-time. Results suggest the potential use of chlorine dioxide gas treatment of low-concentration-long-time as an highly effective method for keeping the freshness of cherry tomato.

  • PDF

Sulforaphane and Total Phenolics Contents and Antioxidant Activity of Radish according to Genotype and Cultivation Location with Different Altitudes (재배지 고도에 따른 무 품종별 설포라판, 총페놀함량 및 항산화 특성)

  • Im, Ju-Sung;Lee, Eung-Ho;Lee, Jong-Nam;Kim, Ki-Deog;Kim, Hwa-Yeong;Kim, Myung-Jun
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.335-342
    • /
    • 2010
  • Sulforaphane (SFN) and total phenolics (TPC) contents and antioxidant activity (AA) were analyzed from 13 radish genotypes (Rhaphanus sativus L.), cultivated at 3 locations with different altitudes (Gangneung: asl 5 m, Jinbu: asl 550 m, and Daegwallyeong: asl 750 m). SFN varied greatly from 0.1 to $120.5{\mu}g{\cdot}g^{-1}$ in dry weight test and was significantly affected by location ($P{\leq}0.001$), genotype ($P{\leq}0.001$) and $location{\times}genotype$ interaction ($P{\leq}0.01$). Radishes, cultivated at Daegwallyeong site, showed higher SFN than those of other locations. Among different genotypes, the root of 'Black radish' and leaves of 'Purunmu' of Daegwallyeong had the highest SFN (107.8 and $120.5{\mu}g{\cdot}g^{-1}$, respectively). TPC in root was affected by genotype ($P{\leq}0.001$), and $location{\times}genotype$ interaction ($P{\leq}0.01$), but not by location. In leaves, TPC was affected by location ($P{\leq}0.01$), genotype ($P{\leq}0.001$), and $location{\times}genotype$ interaction ($P{\leq}0.001$). AA expressed as electron donating ability was significantly influenced by location, genotype and $location{\times}genotype$ interaction and correlated positively with TPC ($Pearson's$ $r$=0.897) in root. These results suggest that radish could be a good source of functional food and high altitude location such as Daegwallyeong has potential for the production of radish with high content of health promoting factors.

Prediction of Radish Growth as Affected by Nitrogen Fertilization for Spring Production (무의 질소 시비량에 따른 생육량 추정 모델식 개발)

  • Lee, Sang Gyu;Yeo, Kyung-Hwan;Jang, Yoon Ah;Lee, Jun Gu;Nam, Chun Woo;Lee, Hee Ju;Choi, Chang Sun;Um, Young Chul
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.531-537
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by 0.7 and $1.4^{\circ}C$, respectively, during the last 30 years. Radish (Raphanus sativus), one of the most important cool season crops, may well be used as a model to study the influence of climatic change on plant growth, because it is more adversely affected by elevated temperatures than warm season crops. This study examined the influence of transplanting time, nitrogen fertilizer level, and climate parameters, including air temperature and growing degree days (GDD), on the performance of a radish cultivar 'Mansahyungtong' to estimate crop growth during the spring growing season. The radish seeds were sown from April 24 to May 22, 2012, at internals of 14 days and cultivated with 3 levels of nitrogen fertilization. The data from plants sown on April 24 and May 8, 2012 were used for the prediction of plant growth as affected by planting date and nitrogen fertilization for spring production. In our study, plant fresh weight was higher when the radish seeds were sown on $24^{th}$ of April than on $8^{th}$ and $22^{nd}$ of May. The growth model was described as a logarithmic function using GDD according to the nitrogen fertilization levels: for 0.5N, root dry matter = 84.66/(1+exp (-(GDD - 790.7)/122.3)) ($r^2$ = 0.92), for 1.0N, root dry matter = 100.6/(1 + exp (-(GDD - 824.8)/112.8)) ($r^2$ = 0.92), and for 2.0N, root dry matter = 117.7/(1+exp (-(GDD - 877.7)/148.5)) ($r^2$ = 0.94). Although the model slightly tended to overestimate the dry mass per plant, the estimated and observed root dry matter and top dry matter data showed a reasonable good fit with 1.12 ($R^2$ = 0.979) and 1.05 ($R^2$ = 0.991), respectively. Results of this study suggest that the GDD values can be used as a good indicator in predicting the root growth of radish.

The Effects of Seeding Time on Growth, Contents of β-carotene and Sugars of Carrots in Jeju Island (파종기가 제주산 당근의 생육과 β-carotene 및 당함량에 미치는 영향)

  • Park, Yong-Bong;Kim, Ki-Taek
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • An optimum seeding date for carrots growing in Jeju was determined. In early growth stage, the number of leaves was more in Hyang-yang #2 cultivar (HY2) than that in the others, meanwhile that of Hukjun 5 chon (H5) and Shinhukjun 5 chon (S5) was higher in the latter half of the growing season. The weight of leaves was greater in HY2 until 2 months after seeding, but thereafter drastically increased and resulted significant difference at harvest in S5. The length of roots was greater in H5 and S5 than in HY2 when seeded on July 17 and measured after September 13, but it was similar in all cultivars when seeded on August 1 and later. The diameter of the roots was greatest in HY2, regardless of seeding dates, meanwhile no difference was found among other cultivars. The weight of roots was greatest in HY2 when seeded on July 17, August 1 or later, meanwhile it was greater in H5 after November, when seeded on August 15. The percentage of roots cracked was 20, 15, and 10% respectively for HY2, S5 and H5. The percentage of roots branched was 0.3% in HY2. The percentage of roots cracked or branched was much higher when seeded on August 1 than on July 17, and was high (40%) in HY2 and S5, compared to H5 when seeded on August 15. The content of sucrose, glucose and fructose increased until 110 days after seeding in all cultivars, but fructose and glucose contents decreased in about 135 days after seeding, but sucrose contents increased continuously even after 135 days. Sucrose content increased and fructose and glucose contents decreased in S5, but this trend was reversed after late November. Sugar contents was different among the cultivars seeded on August 15, while sucrose content decreased and glucose and fructose contents increased with time. The content of ${\beta}$-carotene was more than 12,000 IU in all cultivars, but decreased in 170 days after seeded on July 17. The content was highest in HY2 and followed by S5 and H5 in order. It was not different among the cultivars in 170 days after seeding on August 1, but was higher in S5 than the other cultivars in 170 days after seeded on late and decreased with seeding date.

  • PDF

Changes in Moisture Contents of Rice-hull Based Root Media and Growth Responses of 'Seolhyang' Strawberry during Vegetative Propagation (육묘 과정 중 포트에 충진된 팽연왕겨 혼합상토의 함수량 변화와 '설향' 딸기의 생장 반응)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • This research was conducted to investigate the changes in moisture retention capacities of expanded rice-hull (ERH)-based root media and their influences on the growth of mother and daughter plants in vegetative propagation of 'Seolhyang' strawberry. The proportion of water at the container capacity of ERH medium was in the range of 20 to 23%. This range was lower than the 60 to 66% of strawberry-specialized medium, the 30 to 34% of soil mother material (SMM) and the 30 to 35% of loamy sand. The moisture content of ERH was reduced to 10 to 12% at 8 hours after irrigation, and there were large variations among replications of ERH medium. Among four kinds of root media formulated to contain ERH, the medium of ERH + coir dust (CD) (55 + 45%, v/v) had 26.5 and 32.5% water contents at 20 and 40 days after irrigation to daughter plants, respectively. The m edia o f ERH + sandy loam (S L) and E RH + S MM showed similar trends i n moisture r etention. The pH and EC i n the all root media tested were in the range of 6.7 to 7.1 and 0.03 to $0.08dS{\cdot}m^{-1}$, respectively. The pHs and ECs measured at 20 and 40 days after irrigation were not significantly different in each root medium. Among the root media formulated to contain ERH, the growth of daughter plants was the highest in the treatment of ERH + SL (55 + 45%, v/v). As the blending rate of coir dust was elevated in the ERH + CD media, moisture retention capacity increased gradually, but the growth of daughter plants became worse even though the medium showed higher moisture retention capacity than other root media tested. The growth of roots and aboveground tissues of daughter plants deteriorated in the root media formulated by blending ERH + perlite (PE) at various ratios. The results of this research suggest the optimum formulations of root media and management of moisture content in raising of strawberry daughter plants when ERH is a component of root media.

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis (멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Won Jeong;Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.70-82
    • /
    • 2015
  • This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.

Optimum Crop Load in Different Planting Densities of Adult 'Fuji'/M.9 Apple Tree for Preventing Biennial Bearing and Stabilizing Tree Vigor (성목기 '후지'/M.9 사과나무의 해거리 방지와 수세안정을 위한 재식거리별 적정 착과 수준)

  • Sagong, Dong-Hoon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This study was conducted in three years (7-9 years after planting) to investigate vegetative growth, yield, fruit quality, and return bloom for optimum crop load based on different planting densities of adult 'Fuji'/M.9 apple trees. As plant materials, 'Fuji'/M.9 apple trees planted at $3.5{\times}1.5m$ (190 trees per 10 a), $3.5{\times}1.2m$ (238 trees per 10 a), and $3.2{\times}1.2m$ (260 trees per 10 a) spacing and trained as slender spindles were used. The crop load was assigned to five different object ranges as follows: 55-64, 65-74, 75-84, 85-94, and 95-104 fruit per tree. TCA increment, total shoot growth, return bloom, yield per tree, and yield efficiency tended to increase as planting density decreased, and fruit weight and soluble solid content tended to increase as the object range of crop load decreased. Fruit red color tended to increase as shoot growth decreased. For apple trees planted with 238 trees and 260 trees per 10a, biennial bearing occurred when the crop load was over 85-94 and 75-84 fruits, respectively. However, biennial bearing did not occur when the crop load was 95-104 fruits in apple trees planted with 190 trees per 10a. Accumulated yield tended to increase as planting density and crop load increased, but that of biennial bearing did not show such a difference. Based on our results, optimum crop load recommendations are to set 95-104 fruits per tree in 'Fuji'/M.9 mature apple trees planted at 190 trees per 10a, 75-84 fruits per tree at 238 trees per 10a, and 65-74 fruits per tree at 260 trees per 10a.

Determination of Shelf-life of Black Mini Tomato Based on Maturity and Storage Temperature (흑색 방울토마토의 숙기 및 저장온도에 따른 상품성 유지기간 구명)

  • Park, Mehea;Seo, Jeongmin;Won, Heeyeon;Seo, Jongbun;Moon, Doogyung;Kim, Wooil;Shim, Sangyoun
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.687-696
    • /
    • 2015
  • Black mini tomato 'Hei-G' fruits were harvested at different stages of maturity (immature-mature green and mature-black red) and stored at different temperatures (8, 12, and $20^{\circ}C$) to investigate the quality and lycopene content during storage. Weight loss increased dramatically at higher temperature for both harvesting stages without significant differences. Firmness of immature fruits decreased below the initial level of mature fruit (8.1N) after 5, 8, and 19 days storage, when they were stored at 20, 12, and $8^{\circ}C$, respectively. Soluble solid contents of mature fruit increased at initial storage, and were higher as compared to immature fruits before deterioration at each storage temperature. Decrease in titratable acid of mature fruits depended on storage time and temperature. However, titratable acid of immature fruits showed little change during storage, and so it did not affect flavor. Hunter a value changed greatly in immature fruit stored at high temperature. Unlike ripe tomatoes, there was no significant difference in black tomato Hunter b values of immature and mature fruit at initial and 12 days storage. However, immature fruits stored at $8^{\circ}C$ did not reach full maturity and color development and ripening. High storage temperature increased lycopene production while low storage temperature blocked lycopene development. Shelf life of the immature fruits, which was evaluated by elapsed days to conventional mature stage, was 12 and 15 days when they were stored at 20 and $12^{\circ}C$, respectively. The optimum storage temperature to maintain the quality and lycopene content of mature fruits was $12^{\circ}C$. Moreover, the shelf life of mature fruits stored at $20^{\circ}C$ could reach up to 5 days.