DOI QR코드

DOI QR Code

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis

멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발

  • Lee, Won Jeong (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Ji Hyun (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung Soo (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Heung Tae (Department of Plant Medicine, Chungbuk National University) ;
  • Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 이원정 (한국화학연구원 바이오화학연구센터) ;
  • 이지현 (한국화학연구원 바이오화학연구센터) ;
  • 장경수 (한국화학연구원 바이오화학연구센터) ;
  • 최용호 (한국화학연구원 바이오화학연구센터) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 최경자 (한국화학연구원 바이오화학연구센터)
  • Received : 2014.06.08
  • Accepted : 2014.09.17
  • Published : 2015.02.28

Abstract

This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.

본 연구는 덩굴쪼김병균(Fusarium oxysporum f. sp. melonis)에 대한 저항성 멜론의 효율적인 검정법을 확립하기 위하여 수행하였다. 고령에서 채집한 덩굴쪼김병이 발생한 멜론으로부터 GR 균주를 분리하였으며, 형태학적 및 분자생물학적 동정 방법에 의해 그리고 오이, 멜론, 참외, 수박의 박과 작물에 대한 기주 특이성 조사를 통하여 GR 균주는F. oxysporum f. sp. melonis로 동정되었다. 그리고 4종 덩굴 쪼김병 race 판별품종들의 저항성 반응에 따라 GR 균주는 race 1임을 알 수 있었다. GR 균주의 접종원(소형분생포자) 대량생산을 위해서는 실험한 6종 액체배지 중 V8-juice broth에서 가장 많은 포자가 형성되었다. 시판 중인 22개의 멜론 품종과 6개 멜론 재배용 대목 품종의 GR 균주에 대한 저항성의 정도를 실험하였다. 실험한 멜론 품종 중 3개 품종을 제외한 모든 품종은 다양한 정도의 저항성을 보였다. 그리고 실험한 대목 품종들 모두에서는 덩굴쪼김병이 전혀 발생하지 않았다. 실험한 멜론 품종 중 GR 균주에 대한 저항성 반응에 차이를 보이는 6개 품종('레드퀸', '썸머쿨', '슈퍼세지', '아시아파파야', '얼룩파파야', '아시아황금')을 선발하여 멜론 생육시기, 뿌리 상처, 침지 시간, 접종원 농도 및 재배 온도 등의 발병 조건에 따른 덩굴쪼김병 발생을 조사하였다. 이들 실험의 결과로부터 멜론 품종들의 덩굴쪼김병에 대한 저항성을 검정하기 위해서는 멜론 종자를 파종하고 온실($25{\pm}5^{\circ}C$)에서 7일 동안 재배한 유묘(떡잎 시기)를 뽑아 흙을 제거하고 뿌리 자르기와 같은 상처를 내지 않고 멜론 유묘의 뿌리를 $3{\times}10^5conidia/mL$ 농도의 F. oxysporum f. sp. melonis 포자현탁액에 30분 정도 침지하여 접종하고, 이를 새로운 토양에 이식하고 $25-28^{\circ}C$에서 약 3주일 동안 재배하는 것이 가장 효율적인 방법임을 알 수 있었다.

Keywords

References

  1. Banihashemi, Z. and D.J. DeZeeuw. 1975. The behavior of Fusarium oxysporum f. sp. melonis in the presence and absence of host plants. Phytopathology 65:1212-1217. https://doi.org/10.1094/Phyto-65-1212
  2. Bouhot, D. 1981. Some aspects of the pathogenic potential in formae speciales and races of Fusarium oxysporum on Cucurbitaceae, p. 318-326. In: P.E. Nelson, T.A. Toussoun, and R.J. Cook (eds.). Fusarium: disease, biology, and taxonomy. Pennsylvania State University Press, University Park.
  3. Cafri, D., J. Katan, and T. Katan. 2005. Cross-pathogenicity between formae speciales of Fusarium oxysporum, the pathogens of cucumber and melon. J. Phytopathol. 153:615-622. https://doi.org/10.1111/j.1439-0434.2005.01029.x
  4. Cha, H.S., A.R. Youn, S.A. Lee, K.H. Kwon, B.S. Kim, and D.J. Choi. 2013. Effects of the initial storage temperature of a PA film-packaged muskmelon (Cucumis melo L.) during its storage. Kor. J. Food Preserv. 20:14-22. https://doi.org/10.11002/kjfp.2013.20.1.14
  5. Chun, J. 1995. Computer-assisted classification and identification of Actinomycetes. Ph.D. thesis. University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
  6. Cohen, R., T. Katan, J. Katan, and R. Cohn. 1989. Occurrence of Fusarium oxysporum f. sp. melonis race 1,2 on muskmelon in Israel. Phytoparasitica 17:319-322. https://doi.org/10.1007/BF02980761
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  8. Freeman, S. and R.J. Rodriquez. 1993. A rapid inoculation technique for assessing pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis on cucurbits. Plant Dis. 77:1198-1201. https://doi.org/10.1094/PD-77-1198
  9. Freeman, S., A. Zveibil, H. Vintal, and M. Maymon. 2002. Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in cucurbits. Phytopathology 92:164-168. https://doi.org/10.1094/PHYTO.2002.92.2.164
  10. Geiser, D.M., M. del M. Jimenez-Gasco, S. Kang, I. Makalowska, N. Veeraraghavan, T.J. Ward, N. Zhang, G.A. Kuldau, and K. O'Donnell. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110:473-479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
  11. Gerlach, M. and W.J. Blok. 1988. Fusarium oxysporum f. sp. cucurbitacearum embracing all formae speciales of F. oxysporum attacking Cucurbitaceae. Neth. J. Plant Pathol. 94:17-31. https://doi.org/10.1007/BF01999804
  12. Jacobson, D.J. and T.R. Gordon. 1988. Vegetative compatibility and self-incompatibility within Fusarium oxysporum f. sp. melonis. Phytopathology 78:668-672. https://doi.org/10.1094/Phyto-78-668
  13. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  14. Kuc, J. 1987. Plant immunization and its applicability for disease control, p. 255-273. In: I. Chet (ed.). Innovative approaches to plant disease control. John Wiley, New York.
  15. Kuc, J. 1994. Induced systemic resistance, a non-pesticide technology for disease control in plant, p. 511-518. In: D.L. Weigmann (ed.). Proc. 4th. Nat. Conf. pesticides. Blacksburg, Virginia.
  16. Latin, R.X. and S.J. Snell. 1986. Comparison of methods for inoculation of muskmelon with Fusarium oxysporum f. sp. melonis. Plant Dis. 70:297-300. https://doi.org/10.1094/PD-70-297
  17. Leary, J.V. and W.D. Wilbur. 1976. Identification of the races of Fusarium oxysporum f. sp. melonis causing wilt of muskmelon in California. Phytopathology 66:15-16. https://doi.org/10.1094/Phyto-66-15
  18. Martyn, R.D. and T.R. Gordon. 1996. Fusarion wilt of melon, p. 14-15. In: T.A. Zitter, D.L. Hopkins, and C.E. Thomas (eds.). Compendium of cucurbit diseases. American Phytopathological Society Press, St. Paul, MN.
  19. Matsumoto, Y., T. Ogawara, M. Miyagi, N. Watanabe, and T. Kuboyama. 2011. Response of wild Cucumis species to inoculation with Fusarium oxysporum f. sp. melonis race 1,2y. J. Japan. Soc. Hort. Sci. 80:414-419. https://doi.org/10.2503/jjshs1.80.414
  20. Namiki, F., K. Shimizu, K. Satou, T. Hirabayashi, K. Nishi, T. Kayamura, and T. Tsuge. 2000. Occurrence of Fusarium oxysporum f. sp. melonis race 1 in Japan. J. Gen. Plant Pathol. 66:12-17. https://doi.org/10.1007/PL00012915
  21. Namiki, F., T. Shiomi, K. Nishi, T. Kayamura, and T. Tsuge. 1998. Pathogenic and genetic variation in the Japanese strains of Fusarium oxysporum f. sp. melonis. Phytopathology 88:804-810. https://doi.org/10.1094/PHYTO.1998.88.8.804
  22. Nelson, P. E., T.A. Toussoun, and W.F.O. Marasas. 1983. Fusarium species. An illustrated manual for identification. Pennsylvania State Univ. Press, University Park.
  23. O'Donnell, K.O., E. Cigelnik, and H.H. Casper. 1998. Molecular phylogenetic, morphological and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet. Biol. 23:57-67. https://doi.org/10.1006/fgbi.1997.1018
  24. Owen, J.H. 1955. Fusarium wilt of cucumber. Phytopathology 45:435-439.
  25. Risser, G., Z. Banihashemi, and D.W. Davis. 1976. A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopatholoy 66:1105-1106. https://doi.org/10.1094/Phyto-66-1105
  26. Rural Development Administration (RDA). 2006. Food composition table. 7th ed. RDA, Suwon, Korea.
  27. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Wagacha, J.M., U. Steiner, H.W. Dehne, S. Zuehlke, M. Spiteller, J. Muthomi, and E.C. Oerke. 2010. Diversity in mycotoxins and fungal species infecting wheat in Nakuru District, Kenya. J. Phytopathol. 158:527-535. https://doi.org/10.1111/j.1439-0434.2009.01653.x
  29. White, T.J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315-322. In: M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White (eds.). PCR protocols: A guide to methods and applications. Academic Press, San Diego.
  30. Zhou, X.G. and K.L. Everts. 2007. Characterization of a regional population of Fusarium oxysporum f. sp. niveum by race, cross pathogenicity, and vegetative compatibility. Phytopathology 97:461-469. https://doi.org/10.1094/PHYTO-97-4-0461
  31. Zuniga, T.L., J.P. Jantz, T.A. Zitter, and M.M. Jahn. 1999. Monogenic dominant resistance to gummy stem blight in two melon (Cucumis melo) accessions. Plant Dis. 83:1105-1107. https://doi.org/10.1094/PDIS.1999.83.12.1105

Cited by

  1. Potential Reasons for Prevalence of Fusarium Wilt in Oriental Melon in Korea vol.33, pp.3, 2015, https://doi.org/10.5423/ppj.oa.02.2017.0026
  2. 수박 덩굴쪼김병에 대한 간편 저항성 검정법 확립 vol.23, pp.2, 2015, https://doi.org/10.5423/rpd.2017.23.2.168
  3. Pathological Interrelations of Soil-Borne Diseases in Cucurbits Caused by Fusarium Species and Meloidogyne incognita vol.33, pp.4, 2017, https://doi.org/10.5423/ppj.oa.04.2017.0088
  4. 고추 풋마름병에 대한 효율적인 저항성 검정법 확립 vol.23, pp.4, 2015, https://doi.org/10.5423/rpd.2017.23.4.334
  5. 효과적인 무 무름병 저항성 검정법 개발 vol.24, pp.3, 2015, https://doi.org/10.5423/rpd.2018.24.3.193
  6. Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria vol.29, pp.1, 2015, https://doi.org/10.12791/ksbec.2020.29.1.96
  7. 효율적인 배추 무름병 저항성 검정법 개발 vol.26, pp.3, 2015, https://doi.org/10.5423/rpd.2020.26.3.159