DOI QR코드

DOI QR Code

FISH Karyotype and GISH Meiotic Pairing Analyses of a Stable Intergeneric Hybrid xBrassicoraphanus Line BB#5

  • Belandres, Hadassah Roa (Plant Biotechnology Institute, Department of Life Science, Sahmyook University) ;
  • Waminal, Nomar Espinosa (Plant Biotechnology Institute, Department of Life Science, Sahmyook University) ;
  • Hwang, Yoon-Jung (Plant Biotechnology Institute, Department of Life Science, Sahmyook University) ;
  • Park, Beom-Seok (Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Soo-Seong (BioBreeding Institute) ;
  • Huh, Jin Hoe (Department of Plant Science, Seoul National University) ;
  • Kim, Hyun Hee (Plant Biotechnology Institute, Department of Life Science, Sahmyook University)
  • Received : 2014.09.05
  • Accepted : 2014.09.17
  • Published : 2015.02.28

Abstract

xBrassicoraphanus line BB#5, a new synthetic intergeneric hybrid between Brassica rapa L. ssp. pekinensis and Raphanus sativus L. var. rafiphera induced by N-methyl-N-nitroso-urethane mutagenesis in microspore culture, shows high seed fertility and morphological uniformity. Dual-color fluorescence in situ hybridization (FISH) using 5S and 45S rDNA probes and genomic in situ hybridization (GISH) using B. rapa genomic DNA probe were carried out to analyze the chromosome composition and the meiosis pairing pattern compared to its parental lines. The somatic chromosome complement is 2n = 38, which consists of 17 metacentric and two submetacentric chromosomes with lengths of 2.18 to $5.01{\mu}m$. FISH karyotype analysis showed five and eight pairs of 5S and 45S rDNA loci. GISH meiosis pairing analysis showed that 19 complete bivalents were most frequent and accounted for 42% of the 100 pollen mother cells examined. Based on chromosome number, size, morphology, rDNA distribution, and meiosis pairing pattern, both parental genomes of B. rapa and R. sativus appear to exist in xBrassicoraphanus line BB#5, demonstrating its genome integrity. Such stable chromosome constitutions and meiotic pairing patterns in somatic and meiotic cells are very rare in natural and synthetic intergeneric hybrids. Chromosomal studies and genetic and phenotypic changes in allopolyploids a re discussed. The results p resented h erein will b e usef ul f or f urther g enomic s tudy o f xBrassicoraphanus lines and their improvement as promising new breeding varieties.

Keywords

References

  1. Allen, G.C., M.A. Flores-Vergara, S. Krasnyanski, S. Kumar, and W.F. Thompson. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols 1:2320-2325. https://doi.org/10.1038/nprot.2006.384
  2. Bennett, S.T., A.Y. Kenton, and M.D. Bennett. 1992. Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101:420-424. https://doi.org/10.1007/BF00582836
  3. Cao, W. 2003. Cytogenetic and molecular genetic evidence on evolution of genus Triticum, p. 223-247. In: A.K. Sharma and A. Sharma (eds.). Plant genome: Biodiversity and evolution. Phanerogams-Angiosperm. Science Publisher, Enfield, NH, USA.
  4. Capdeville, G., M.T. Souza Junior, D. Szinay, L.E.C Diniz, E. Wijnker, R. Swennen, G.H.J. Kema, and H. Jong. 2008. The potential of high-resolution BAC-FISH in banana breeding. Euphytica 166:431-443. doi:10.1007/s10681-008-9830-2.
  5. Comai, L. 2005. The advantages and disadvantages of being polyploidy. Nat. Rev. Genet. 6:836-846.
  6. Devi, J., J.M. Ko, and B.B. Seo. 2005. FISH and GISH: Modern cytogenetic techniques. Indian J. Biotech. 4:307-315.
  7. Dolstra, O. 1982. Synthesis and fertility of xBrassicoraphanus and ways of transferring Raphanus characters to Brassica. Agric. Res. Rep. 917:1-90.
  8. Fujii, K. and N. Ohmido. 2011. Stable progeny production of the amphidiploid resynthesized Brassica napus cv. Hanakkori, a newly bred vegetable. Theor. Appl. Genet. 123:1433-1443. https://doi.org/10.1007/s00122-011-1678-5
  9. Fukui, K., S. Nakayama, N. Ohmido, H. Yoshiaki, and M. Yamabe. 1998. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes. Theor. Appl. Genet. 96:325-330. https://doi.org/10.1007/s001220050744
  10. Fukui, K. 2005. Recent development of image analysis method in plant chromosome research. Cytogene. Genome Res. 109(1-3):83-89. https://doi.org/10.1159/000082386
  11. Gaeta, R.T., J.C. Pires, F. Iniguez-Luy, E. Leon, and T.C. Osborn. 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403-3417. https://doi.org/10.1105/tpc.107.054346
  12. Ge, X.H. and Z.Y. Li. 2007. Intra- and intergenomic homology of B-gemone chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis. Chromosome Res. 15:849-861. doi:10.1007/s10577-007-1168-4.
  13. Gerlach, W.L. and J.R. Bedbrook. 1979. Cloning and characterization of ribosomal rDNA genes from wheat and barley. Nucleic Acids Res. 7:1869-1885. https://doi.org/10.1093/nar/7.7.1869
  14. Hasterok, R. and J. Maluszynska. 2000a. Cytogenetic markers of Brassica napus chromosomes. J. Appl. Genet. 41:1-9.
  15. Hasterok, R. and J. Maluszynska. 2000b. Cytogenetic analysis of diploid Brassica species. Acta. Biol. Cracov. Ser. Bot. 42:145-163.
  16. Hasterok, R., E. Wolny, M. Hosiawa, M. Kowalczyk, S. Kulak-Ksiazczyk, T. Ksiazczyk, W.K. Heneen, and J. Maluszyynska. 2006. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 97:205-216.
  17. Howell, E.C. and S. Armstrong. 2013. Using sequential fluorescence and genomic in situ hybridization (FISH and GISH) to distinguish the A and C genomes in Brassica napus, p. 25-34. In: Plant meiosis: Methods and protocols, methods in molecular biology 990. Springer Science+Business Media, New York, USA. doi:10.1007/978-1-62703-333-6_3.
  18. Hwang, Y.J., H.H. Kim, S.J. Kwon, T.J. Yang, H.C. Ko, B.S. Park, J.D. Chung, and K.B. Lim. 2009. Karyotype analysis of three Brassica species using five different repetitive DNA markers by fluorescence in situ hybridization. Kor. J. Hort. Sci. Technol. 27:456-463.
  19. Hwang, Y.J., S.N. Lee, K.A. Song, K.B. Ryu, K.H. Ryu, and H.H. Kim. 2010. Karyotype analyses of genetically modified (GM) and non-GM hot peppers by conventional staining and FISH Method. Hort. Environ. Biotechnol. 51:525-530.
  20. Hwang, Y.J., H.J. Yu, J.H. Mun, K.B. Ryu, B.S. Park, and K.B. Lim. 2012. Centromere repeat DNA originated from Brassica rapa is detected in the centromere region of Rapanus sativus chromosomes. Kor. J. Hort. Sci. Technol. 30:751-756. https://doi.org/10.7235/hort.2012.12168
  21. Jellen, E.N., B.S. Gill, and T.S. Cox. 1994. Genomic in situ hybridization differentiates between A/D and C-genome chromatin and detects intergenomic translocations in polyploidy oats species (genus Avena). Genome 37:613-618. https://doi.org/10.1139/g94-087
  22. Kato, M. and S. Tokumasu. 1983. The stability of chromosome numbers and the maintenance of euploidy in Brassicoraphanus. Euphytica 32:415:423. https://doi.org/10.1007/BF00021450
  23. Kato, A., J.C. Lamb, and J.A. Birchler. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl Acad. Sci.101: 13554-13559. doi:10.1073/pnas.0403659101.
  24. Kenton, A., A.S. Parokonny, Y.Y. Gleba, and M.D. Bennett. 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol. Gen. Genet. 240:159-169. https://doi.org/10.1007/BF00277053
  25. Kim, S.Y., Y.P. Lim, and J.W. Bang. 1998. Cytogenetic analysis of Brassica campestris var. pekinensis using C-banding and FISH. Genes Genom. 20:285-294.
  26. Kitashiba, H., F. Li, H. Hirakawa, T. Kawanabe, Z. Zou, Y. Hasegawa, K. Tonosaki, S. Shirasawa, A. Fukushima, S. Yokoi, Y. Takahata, T. Kakizaki, M. Ishida, S. Kamoto, K. Sakamoto, K. Shirasawa, S. Tabata, and T. Nishio. 2014. Draft sequences of the radish (Raphanus sativus L.). Genome DNA Res. p. 1-10. doi:10.1093/dnares/dsu014.
  27. Koo, D.H., C.P. Hong, J. Batley, Y.S. Chung, D. Edwards, J.W. Bang, Y. Hur, and Y.P. Lim. 2011. Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97:173-185. https://doi.org/10.1016/j.ygeno.2010.12.002
  28. Lee, S.S., H.D. Kim, D.K. Oh, and J.K. Woo. 1999. Breeding a fertile intergeneric allotetraploid plant between heading Chinese cabbage and Korean radish. Kor. J. Hort. Sci. Tech. 17:653-653.
  29. Lee, S.S., W.J. Choi, and J.G. Woo. 2002. Development of new vegetable crop in xBrassicoraphanus by hybridization of Brassica campestris and Raphanus sativus. J. Kor. Soc. Hort. Sci. 43:693-698.
  30. Lee, S.S., S.A. Lee, J.M. Yang, and J.K. Kim. 2011. Developing stable progenies of xBrassicoraphanus, an intergeneric allopolyploid between Brassica rapa and Raphanus sativus, through induced mutation using microspore culture. Theor. Appl. Genet. 122:885-891. https://doi.org/10.1007/s00122-010-1494-3
  31. Leitch, A.R. and I.J. Leitch. 2008. Genomic plasticity and the diversity of polyploidy plants. Science 320:481-483. https://doi.org/10.1126/science.1153585
  32. Levan, A., K. Fredga, and A.A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52:517-523.
  33. Levsky, J.M. and R.H. Singer. 2003. Fluorescence in situ hybridization: Past, present and future. J. Cell Sci. 116:2833-2838. https://doi.org/10.1242/jcs.00633
  34. Lim, K.B., J.H. De Jong, T.J. Yang, J.Y. Park, S.J. Kwon, J.S. Kim, M.H. Lim, J.A. Kim, M.A. Jin, S.H. Kim, Y.P. Lim, J.W. Bang, H.I. Kim, and B.S. Park. 2005. Characterization of rDNA and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cell. 19:436-444.
  35. Lim, K.B., T.J. Yang, Y.J. Hwang, J.S. Kim, J.Y. Park, S.J. Kwon, J.A. Kim, B.S. Choi, M.H. Lim, M. Jin, H. de Jong, I. Bancroft, Y.P. Lim, and B.S. Park. 2007. Characterization of the centromere and per-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J. 49:173-183. https://doi.org/10.1111/j.1365-313X.2006.02952.x
  36. Lim, S.J., S.S. Lee, and J.W. Bang. 2012. Karyotype and genomic in situ hybridization pattern in xBrassicoraphanus, an intergeneric hybrid between Brassica campestris ssp. pekinensis and Raphanus sativus. Pl. Biotech. Rep. 6:107-112. https://doi.org/10.1007/s11816-011-0202-3
  37. Lou, Q., M. Iovene, D.M. Spooner, C. Robin Buell, and J.M. Jiang. 2010. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435-442. https://doi.org/10.1007/s00412-010-0269-6
  38. Maluszynska, J. and J.S. Heslop-Harrison. 1993. Physical mapping of rDNA loci in Brassica species. Genome 36:774-781. https://doi.org/10.1139/g93-102
  39. McNaughton, I.H. 1979. The current position and problems in the breeding of Raphanubrassica (radicole) as a forage crop. Proc. 4 th Eucarpia-Conf. Breed Cruciferous Crops p. 22-28.
  40. Moghe, G.D. and S.H. Shiu. 2014. The causes and molecular consequences of polyploidy in flowering plants. Ann. New York Acad. Sci. 1320:16-34. https://doi.org/10.1111/nyas.12466
  41. Namai, H., M. Sarashima, T. Hosoda. 1980. Interspecific and intergeneric hybridization breeding in Japan, p. 191-204. In: S. Tsunoda, K. Hinata, and C. Gomez-campo (eds.) Brassica crop and wild allies. Japan. Sci. Soc. Tokyo.
  42. Olsson, G. and S. Ellerstrom. 1980. Polyploidy breeding in Europe, p. 167-190. In: S. Tsunoda, K. Hinata, and C. Gomez-Campo (eds.). Brassica crops and wild allies. Japan. Sci. Soc. Tokyo.
  43. Park, H.M., E.J. Jeon, N.E. Waminal, K.S. Shin, S.J. Kweon, B.S. Park, S.C. Suh, and H.H. Kim. 2010. Detection of transgenes in three genetically modified rice lines by fluorescence in situ hybridization. Genes Genomics 32:527-531. doi:10.1007/s13258-010-0064-z.
  44. Prakash, S., S.R. Bhat, C.F. Quiros, P.B. Kirti, and V.L. Chopra. 2009. Brassica and its close allies: cytogenetics and evolution, p. 21-187. In: J. Jules (ed.). Plant breed reviews, Vol. 31. John Wiley and Sons. Inc. London.
  45. Snowdon, R.J., W. Kohler, and A. Kohler. 1997. Chromosomal localization of rDNA loci in the Brassica A and C genomes. Genome 40:582-587. https://doi.org/10.1139/g97-076
  46. Tokumasu, S. 1976. The increase of seed fertility of Brassicoraphanus through cytological irregularity. Euphytica 25:463-470. https://doi.org/10.1007/BF00041580
  47. Vasconcelos, S., A.A. Souza, C.L. Gusmao, M. Milani, A.M. Benko-Iseppon, and A.C. Brasileiro-Vidal. 2010. Heterochromatin and 5S and 45S rDNA sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron 41:746-753. doi:10.1016/j.micron.2010.06.002.
  48. Waminal, N.E., H.M. Park, K.B. Ryu, J.B. Kim, T.J. Yang, and H.H. Kim. 2012. Karyotype analysis of Panax ginseng C.A. Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution. Comp. Cytogen. 6:425-441. https://doi.org/10.3897/compcytogen.v6i4.3740
  49. Yang, Q., L. Hanson, M.D. Bennett, and I.L. Leitch. 1999. Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 45:512-518.
  50. Yao, X.C., X.H. Ge, J.P. Chen, and Z.Y. Li. 2010. Intra- and intergenomic relationships in interspecific hybrids between Brassica (B. rapa, B. napus) and a wild species B. maurorum as revealed by genomic in situ hybridization (GISH). Euphytica 173:113-120. https://doi.org/10.1007/s10681-010-0131-1
  51. Wang, Y., K. Sonntag., E. Rudloff, P. Wehling, and R.J. Snowdon. 2006. GISH analysis of disomic Brassica napus-Crambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines. Plant Cell Rep. 25:35-40. https://doi.org/10.1007/s00299-005-0031-3
  52. Xiong, Z.Y. and J.C. Pires. 2011. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37-49. https://doi.org/10.1534/genetics.110.122473
  53. Zhong, X.B., J. Hans de Jong, and P. Zabel. 1996. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res. 4:24-28. doi:10.1007/BF02254940.

Cited by

  1. A modified method for preparing meiotic chromosomes based on digesting pollen mother cells in suspension vol.8, pp.1, 2015, https://doi.org/10.1186/s13039-015-0184-x
  2. Cytogenetic Mapping of Carthamus tinctorius L. with Tandemly Repeated DNA Sequences by Fluorescence in situ Hybridization vol.30, pp.6, 2015, https://doi.org/10.7732/kjpr.2017.30.6.654
  3. Analysis of Chromosome Composition of Gastrodia elata Blume by Fluorescent in situ Hybridization using rDNA and Telomeric Repeat Probes vol.26, pp.2, 2015, https://doi.org/10.7783/kjmcs.2018.26.2.113
  4. FISH mapping of rDNA and telomeric repeats in 10 Senna species vol.60, pp.2, 2019, https://doi.org/10.1007/s13580-018-0115-y
  5. Cytogenetic Analyses Revealed Different Genome Rearrangement Footprints in Four ×Brassicoraphanus Lines with Different Fertility Rates vol.7, pp.2, 2019, https://doi.org/10.9787/pbb.2019.7.2.95
  6. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat vol.41, pp.7, 2015, https://doi.org/10.1007/s13258-019-00786-x