DOI QR코드

DOI QR Code

Determination of Shelf-life of Black Mini Tomato Based on Maturity and Storage Temperature

흑색 방울토마토의 숙기 및 저장온도에 따른 상품성 유지기간 구명

  • Park, Mehea (Postharvest Research Team, National Institute of Horticultural and Herbal science) ;
  • Seo, Jeongmin (Postharvest Research Team, National Institute of Horticultural and Herbal science) ;
  • Won, Heeyeon (Postharvest Research Team, National Institute of Horticultural and Herbal science) ;
  • Seo, Jongbun (Jeonnam-do Agricultural Research & Extension Service) ;
  • Moon, Doogyung (Protected Horticulture Research Station, National Institute of Horticultural and Herbal Science) ;
  • Kim, Wooil (Gyongsangnam-do Agricultural Research & Extension Service) ;
  • Shim, Sangyoun (Gyeonggi-do Agricultural Research & Extension Service)
  • 박미희 (국립원예특작과학원 저장유통연구팀) ;
  • 서정민 (국립원예특작과학원 저장유통연구팀) ;
  • 원희연 (국립원예특작과학원 저장유통연구팀) ;
  • 서종분 (전라남도 농업기술원) ;
  • 문두경 (국립원예특작과학원 시설원예연구소) ;
  • 김우일 (경상남도 농업기술원) ;
  • 심상연 (경기도 농업기술원)
  • Received : 2015.02.13
  • Accepted : 2015.05.22
  • Published : 2015.10.31

Abstract

Black mini tomato 'Hei-G' fruits were harvested at different stages of maturity (immature-mature green and mature-black red) and stored at different temperatures (8, 12, and $20^{\circ}C$) to investigate the quality and lycopene content during storage. Weight loss increased dramatically at higher temperature for both harvesting stages without significant differences. Firmness of immature fruits decreased below the initial level of mature fruit (8.1N) after 5, 8, and 19 days storage, when they were stored at 20, 12, and $8^{\circ}C$, respectively. Soluble solid contents of mature fruit increased at initial storage, and were higher as compared to immature fruits before deterioration at each storage temperature. Decrease in titratable acid of mature fruits depended on storage time and temperature. However, titratable acid of immature fruits showed little change during storage, and so it did not affect flavor. Hunter a value changed greatly in immature fruit stored at high temperature. Unlike ripe tomatoes, there was no significant difference in black tomato Hunter b values of immature and mature fruit at initial and 12 days storage. However, immature fruits stored at $8^{\circ}C$ did not reach full maturity and color development and ripening. High storage temperature increased lycopene production while low storage temperature blocked lycopene development. Shelf life of the immature fruits, which was evaluated by elapsed days to conventional mature stage, was 12 and 15 days when they were stored at 20 and $12^{\circ}C$, respectively. The optimum storage temperature to maintain the quality and lycopene content of mature fruits was $12^{\circ}C$. Moreover, the shelf life of mature fruits stored at $20^{\circ}C$ could reach up to 5 days.

흑색 방울토마토 '헤이-G'의 저장력을 구명하기 위해 숙도별(짙은 녹색단계의 미숙, 검붉은 단계의 적숙)로 수확하여 저장온도별(8, 12, $20^{\circ}C$)로 3주간 저장하면서 품질과 라이코펜 함량을 조사하였다. 흑색 방울토마토의 중량감소율은 미숙과와 적숙과에 따른 유의적인 차이는 없었고, 저장 온도가 높을수록 높게 나타났다. 경도는 미숙과를 $20^{\circ}C$에서 5일 이후, $12^{\circ}C$에서 8일 이후, $8^{\circ}C$에서 19일 이후에 적숙과의 초기치(8.1 N) 이하로 낮아졌다. 적숙과의 가용성고형물 함량은 저장초기 증가한 후 부패가 일어나기 전까지 각각의 저장온도에서 미숙과보다 높았다. 적정산도는 적숙과의 경우 저장기간과 저장온도에 따라 낮아지는 경향을 보인 반면에 미숙과의 경우는 후숙이 진행되어도 적정산도가 거의 변화하지 않아 풍미에 영향을 미칠 것으로 보인다. Hunter a값은 저장온도가 높을수록 특히 미숙과의 경우 급격히 변화하였으나, $8^{\circ}C$에 저장한 미숙과는 착색불량 및 장해로 인해 후숙되지 못했다. 완숙토마토와 달리 흑색 방울토마토의 Hunter b 값은 저장 12일까지 미숙과와 적숙과 간의 유의적인 차이는 없었다. 라이코펜의 함량은 저장온도가 높을수록 높게 나타나며 저온에서 저장한 경우 라이코펜 합성이 저해되었다. 이상의 결과로부터 흑색 방울토마토의 저장기간을 적숙과로 설정할 경우 미숙과의 저장온도는 $12^{\circ}C$에서 15일, $20^{\circ}C$에서 12일간 저장할 수 있을 것으로 보인다. 흑색 방울 토마토를 적숙과로 수확할 경우 라이코펜 함량과 외관 품질을 고려하여 $12^{\circ}C$ 내외가 적절하며, $20^{\circ}C$ 저장은 약 5일 이내로 판단된다.

Keywords

References

  1. Yang, Y.J., K.W. Park, and J.C. Jeong. 1991. The influence of pre- and post harvest factors on the shelf-life and quality of leaf lettuce. Korean J. Food Sci. Technol. 23:133-140.
  2. Ali, M.S., K. Nakano, and S. Maezawa. 2004. Combined effect of heat treatment and modified atmosphere packaging on the color development of cherry tomato. Postharvest Biol. Technol. 34:113-116. https://doi.org/10.1016/j.postharvbio.2004.05.006
  3. Cox, S.E., C. Stushnoff, and D.A. Sampson. 2003. Relationship of fruit color and light exposure to lycopne content and antioxidant properties of tomato. Can. J. Plant Sci. 83:913-919. https://doi.org/10.4141/P03-041
  4. Ekelund, L. and H. Jonsson. 2011. How does modernity Taste? Tomatoes in the societal change from modernity to late modernity. Culture Unbound 3:439-454. https://doi.org/10.3384/cu.2000.1525.113439
  5. Fuchs, Y., A. Weksler, I. Rot, E. Pesis, and E. Fallik. 1995. Keeping quality of cherry tomatoes, designated for export. Acta Hortic. 398:257-264.
  6. Gerster, H. 1997. The potential role of lycopene for human health. J. Amer. Coll. Nutr. 16:109-126. https://doi.org/10.1080/07315724.1997.10718661
  7. Gomez, P., M.A. Ferrer, J.P. Fernandez-Trujillo, A. Calderon, F. Artes, M. Egea-Cortines, and J. Weiss. 2009. Structural changes, chemical composition and antioxidant activity of cherry tomato fruits (cv. Micro-Tom) stored under optimal and chilling conditions. J. Sci. Food Agric. 89:1543-1551. https://doi.org/10.1002/jsfa.3622
  8. Hershkovitz, V., S.I. Saguy, and E. Pesis. 2005. Postharvest application of 1-MCP to improve the quality of various avocado cultivars. Postharvest Biol. Technol. 37:252-264. https://doi.org/10.1016/j.postharvbio.2005.05.003
  9. Hu, Z.L., L. Deng, B. Yan, Y. Pan, M. Luo, X.Q. Chen, T.Z. Hu, and G.P. Chen. 2011. Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant. 55:27-34. https://doi.org/10.1007/s10535-011-0004-z
  10. Javanmardi, J. and C. Kubota. 2006. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Technol. 41:151-155. https://doi.org/10.1016/j.postharvbio.2006.03.008
  11. Kaur, D., A.A. Wani, D.P.S. Oberoi, and D.S. Sogi. 2008. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem. 108:711-718. https://doi.org/10.1016/j.foodchem.2007.11.002
  12. Kumar, A., B.S. Ghuman, and A.K. Gupta. 1999. Non-refrigerated storage of tomatoes-effect of HDPE film rapping. J. Food Sci. Technol.-Mysore 36:438-440.
  13. Liu, L.H., D. Zabaras, L.E. Bennett, P. Aguas, and B.W. Woonton. 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chem. 115:495-500. https://doi.org/10.1016/j.foodchem.2008.12.042
  14. Malundo, T.M.M., R.L. Shewfelt, and J.W. Scott. 1995. Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol. Technol. 6:103-110. https://doi.org/10.1016/0925-5214(94)00052-T
  15. Marvasi, M., J.T. Noel, A.S. George, M.A. Farias, K.T. Jenkins, G. Hochmuth, Y. Xu, J.J. Giovanonni, and M. Teplitski. 2014. Ethylene signaling affects susceptibility of tomatoes to Salmonella. Microb. Biotechnol. 7:545-555. https://doi.org/10.1111/1751-7915.12130
  16. Meheriuk, M., B. Girard, L. Moyis, H.J.T. Beveridge, D.L. McKenzie, J. Harrison, S. Weintraub, and R. Hocking. 1995. Modified atmosphere packaging of 'Lapins' sweet cherry. Food Res. Intl. 28:239-244. https://doi.org/10.1016/0963-9969(95)00003-5
  17. Opiyo, A.M. and T.J. Ying. 2005. The effects of 1-methylcyclopropene treatment on the shelf life and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruit. Intl. J. Food Sci. Technol. 40:665-673. https://doi.org/10.1111/j.1365-2621.2005.00977.x
  18. Panthee, D.R., J.A. Labate, M.T. McGrath, A.P. Breksa Ш, and L.D. Robertson. 2013. Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica 193:169-182. https://doi.org/10.1007/s10681-013-0895-1
  19. Park, S.W., E.Y. Ko, M.R. Lee, and S.J. Hong. 2005. Fruit quality of 'York' tomato as influenced by harvest maturity and storage temperature. Kor. J. Hort. Sci. Technol. 23:31-37.
  20. Park, S.W., J.W. Lee, Y.C. Kim, K.Y. Kim, and S.J. Hong. 2004. Changes in fruit quality of tomato 'Dotaerang' cultivar during maturation and postharvest ripening. Kor. J. Hort. Sci. Technol. 22:381-387.
  21. Rothan, C., S. Duret, C. Chevalier, and P. Raymond. 1997. Suppression of ripening-associated gene expression in tomato fruits subjected to a high $CO_2$ concentration. Plant Physiol. 114:255-263.
  22. Seo, J.B., G.H. Shin, M.H. Jang, Y.S. Lee, H.J. Jung, B.K. Yoon, and K.J. Choi. 2013. Breeding of black tomato 'Hei' for protected cultivation. Kor. J. Hort. Sci. Technol. 31:833-836.
  23. Seo, J.B., G.H. Shin, Y.S. Lee, M.H. Jang, D.M. Son, B.K. Yoon, J.W. Lee, and K.J. Choi. 2014. Breeding of black tomato 'Hei-G' suitable for protected cultivation. Kor. J. Hort. Sci. Technol. 32:917-921.
  24. Suslow, T.V. and M. Cantwell. 2009. "Tomato: recommendations for maintaining postharvest quality." Postharvest Technology Research Information Center, UC Davis, California, USA.
  25. Wills, R.B.H. and V.V.V. Ku. 2002. Use of 1-MCP to extend the time to ripen of green tomatoes and postharvest life of ripe tomatoes. Postharvest Biol. Technol. 26:85-90. https://doi.org/10.1016/S0925-5214(01)00201-0
  26. Zhao, D.Y, L. Shen, B. Fan, K.L. Liu, M.M. Yu, Y. Zheng, Y Ding, and J.P. Sheng. 2009. Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. J. Food Sci.74:348-352. https://doi.org/10.1111/j.1750-3841.2009.01156.x

Cited by

  1. Short-term pretreatment with high CO2 alters organic acids and improves cherry tomato quality during storage vol.58, pp.2, 2017, https://doi.org/10.1007/s13580-017-0198-x