• Title/Summary/Keyword: Korean historical earthquakes

Search Result 48, Processing Time 0.023 seconds

Seismic characteristics of Tectonic Provinces of The Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

Characteristics of Korean Earthquakes and Research Activities for the Seismic Hazard Mitigation in Korea

  • Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.1-12
    • /
    • 1998
  • Korea is not considered to be one of the safe zones for earthquakes any more. According to the records of the historical records and recent earthquake events in Korea, the possibillty of disastrous seismic hazards cannot be ignored, Korea Earthquake Engineering Research Center (KEERC) and Earthquake Engineering Society of Korea(EESK) have been established by that consensus. In this paper, historical earthquake records and seismicity in Korea are reviewed. And the research activities and the research system for the earthquake hazards mitigation of KEERC are introduced and the efforts of ESSK to renovate seismic design code system and to optimize the protection levels against earthquake disasters is explained.

  • PDF

Characteristics of Damaging Earthquakes Occurred in Seoul Metropolitan Area for the Last Two Thousand Years (과거 2000년간 서울 및 수도권에서 발생한 피해 지진의 특성)

  • Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.637-644
    • /
    • 2012
  • The Seoul metropolitan area is densely populated with 40 percent of Korean people and quite weak to the seismic hazard. According to the analysis of historical documents, the largest earthquake occurred in this area is MMI VIII-IX acompanying with a large shaking, collapse of stone walls, collapse of houses, and many casualties. Two times of damaging earthquakes occurred in the first century (A.D. 27, 89), and there was a long quiet period of about 1430 years. Another big earthquakes re-occurred three times in the 16-17 century (1518, 1613, 1692) and then a quiet period has continued to the present time. Just after Seoul earthquake in 1518, aftershocks occurred almost 19 days consecutively and many triggered earthquakes occurred not only in Seoul metropolitan area but also in Hwanghae province, northern Korea. It indicates that the largest potential earthquake in and around Seoul is MMI VIII-IX with a long occurrence period of about 1400-1500 years.

Earthquakes occurred around the Yeongweol area (영월 및 인접 지역에서 발생한 지진에 대한 고찰)

  • 추교승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.94-97
    • /
    • 1997
  • The December 13, 1996 Yeongweol earthquake of magnitude 4.5 was felt almost everywhere in southern part of the Korean Peninsula and Cheju Island, even though not feld in Tsushima Island at other places in Japan near to Korea. Production lines of semiconductor disk in electronic engineering companies of Gumi manufacturing complex were seriously affected by the shake of this earthquake. Total 17 earthquakes of magnitude 4 or above occurred within the area of 50km radius from Yeongweol in the period from the year 1400 to 1996. This group of earthquakes includes 12 events of magnitude 5.0 or above and 3 events of magnitude 6.0 or above. Among these events, 13 earthquakes are historical events of years 1400-1904. Most of them occurred in 15-16 centuries. The February 21, 1596 Jungseon-Pyeongchang event of magnitude 6.5 is the largest one up to now in the area. There are four instrumental earthquakes (years 1905-1996) of magnitude 4.0 or above in this area. An earthquake of magnitude 4.4 occurred on 5th of November, 1919 at almost the same place as the December 13, 1996 earthquake of magnitude 4.5. Thus this event is preceded with the previous one by 77 years.

  • PDF

Investigation on Effective Peak Ground Accelerations Based on the Gyeongju Earthquake Records (경주지진 관측자료에 기반한 유효최대지반가속도 분석)

  • Shin, Dong Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.425-434
    • /
    • 2016
  • This study investigates important parameters used to determine an effective peak ground acceleration (EPGA) based on the characteristics of response spectra of historical earthquakes occurred at Korean peninsula. EPGAs are very important since they are implemented in the Korean Building Code for the seismic design of new structures. Recently, the Gyeongju earthquakes with the largest magnitude in earthquakes measured at Korea took place and resulted in non-structural and structural damage, which their EPGAs should need to be evaluated. This paper first describes the basic concepts on EPGAs and the EPGAs of the Gyeongju earthquakes are then evaluated and compared according to epicentral distances, site classes and directions of seismic waves. The EPGAs are dependant on normalizing factors and ranges of period on response spectrum constructed with the Gyeongju earthquake records. Using the normalizing factors and the ranges of period determined based on the characteristics of domestic response spectra, this paper draw a conclusion that the EPGAs are estimated to be about 30 % of the measured peak ground accelerations (PGA).

Estimation of Site Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역의 부지 응답 특성 평가)

  • Sun, Chang-Guk;Bang, Eun-Seok;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.125-132
    • /
    • 2006
  • To estimate the local site effects at two town fortress areas where stone parapets were collapsed during historical earthquakes, site characteristics were evaluated using borehole drillings and seismic tests and equivalent-linear site response analyses were conducted based on the shear wave velocity (Vs) profiles determined from site investigations. The study sites are categorized as site classes C and B according to the mean Vs to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in short period range of 0.06 to 0.16 sec. For site class C in the study areas, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_{\alpha}$ and $F_\nu$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the characteristics showing high amplification in short period range, which can result in the collapse of stone parapets having the short natural period.

  • PDF

Analysis on the Relationship between Intensity and Magnitude for Historical Earthquakes in the Korean Peninsula (한반도의 역사지진 평가를 위한 진도-규모 관계 분석)

  • Kim, Hyeon-hwa;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.643-648
    • /
    • 2015
  • Equations that could estimate the local magnitude of historical earthquakes, being difficult to calculate, in Sino-Korea craton was obtained using instrumental earthquake data for 22 Korean and 46 northeastern Chinese events. The obtained equations from intensity $I_0$ is $M_L=1.7+0.57{\times}I_0$. The equation from felt area FA for the Korean Peninsula is $M_L=4.29-1.34{\times}log(FA)+0.28{\times}log^2(FA)$. When the information on earthquake damage, effects, and felt area is all recorded at the same time, the former equation of intensity is more feasible than that of felt area due to uncertainty in earthquake felt area.

Discussions on the September 2016 Gyeongju Earthquakes (2016년 9월 경주지진 소고(小考))

  • Lee, Kiehwa
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • A sequence of earthquakes with the main shock $M_L$ 5.8 occurred on September 12 2016 in the Gyeongju area. The main shock was the largest earthquakes in the southern part of the Korean peninsula since the instrumental seismic observation began in the peninsula in 1905 and clearly demonstrated that the Yangsan fault is seismically active. The mean focal depth of the foreshock, main shock, and aftershock of the Gyeongju earthquakes estimated by the crustal model of single layer of the Korean peninsula without the Conrad discontinuity turns out to be 12.9 km, which is 2.8 km lower than that estimated based on the IASP91 reference model with the Conrad discontinuity. The distribution of the historical and instrumental earthquakes in the Gyeongju area indicates that the Yangsan fault system comprising the main Yangsan fault and its subsidiary faults is a large fracture zone. The epicenters of the Gyeongju earthquakes show that a few faults of the Yangsan fault system are involved in the release of the strain energy accumulated in the area. That the major earthquakes of Gyeongju earthquakes occurred not on the surface but below 10 km depth suggests the necessity of the study of the distribution of deep active faults of the Yangsan fault system. The magnitude of maximum earthquake of the Gyeongju area estimated based on the earthquake data of the area turns out to be 7.3. The recurrence intervals of the earthquakes over magnitudes 5.0, 6.0 and 7.0 based on the earthquake data since 1978, which is the most complete data in the peninsula, are estimated as 80, 670, and 5,900 years, respectively. The September 2016 Gyeongju earthquakes are basically intraplate earthquakes not related to the Great East Japan earthquake of March 11 2011 which is interplate earthquake.

Location of Recent Micro-earthquakes in the Gyeongju Area (최근 경주지역 미소지진 진원 위치)

  • Han, Minhui;Kim, Kwang-Hee;Son, Moon;Kang, Su Young;Park, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Small to large earthquakes have been reported in Gyeongju and its vicinity in southeast Korea during historical period as well as instrumental observation period. We identified and located more than 300 earthquakes that occurred between January 2010 and December 2014 in a $20km{\times}30km$ area, but were unreported because of their small magnitudes. We used the Joint Hypocenter Determination (JHD) method to minimize the influence of the differences between the actual earth structure and 1-D velocity model for earthquake locations. The potential relationship between the previously reported Quaternary faults and the earthquake hypocenters was investigated. Many micro-earthquakes were found to be located in the southern segment of the Yeonil Tectonic Line, the Seokup fault, and the Waup basin boundary faults.