• Title/Summary/Keyword: Korean Slug

Search Result 214, Processing Time 0.025 seconds

The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material (반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF

Microstructural Characteristics by Compression Holding Time in Semi-Solid Forging (반용융 단조에서 가압유지 시간에 의한 미세조직의 특성)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.174-182
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net-shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression -holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect microstructural characteristics and shape of products is important to make decision, where it is necessary to find overall heat transfer coefficient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of obtaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression holding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression holding time on microstructural characteristics of products is finally investigated by experiment.

  • PDF

Control of Slug by Using Beer and Cigarette Mixture (맥주와 담배 혼합액을 이용한 민달팽이 방제)

  • Yoon, Jong-Chul;Park, Jong-Ho;Shim, Chang-Ki;Ryu, Kyung-Yul;Jee, Hyeong-Jin
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.325-330
    • /
    • 2007
  • Among various food base baiting materials, beer and macerated cucumber were the most effective to induce slug that is a troublesome pest on leafy vegetables, especially on lettuce. However, the baits attracted only but did not kill the pest. When the baits were combined with various insecticidal organic materials, a few combinations such as beer and cigarette mixture successfully induced and killed the slug in the field test. The most effective combination of beer 50ml and a cigarette contained in a small plastic box killed 25 slugs per night. While macerated cucumber 50ml and a cigarette mixture killed only 4.3 slugs. The bait of beer and cigarette mixture revealed 68.4% control value against slug damage when treated for 3 consecutive days in a lettuce cultivation greenhouse. The bait also effectively reduced the slug damage in a lettuce nursery showing 58.3% control value. The method seemed highly useful for the control of slug in the organic farming system in which application of pesticides are strictly prohibited.

Flow Measurement in Bubbly and Slug Flow Regimes Using The Electromagnetic Flowmeter Developed (전자기유량계를 이용한 기포 및 슬러그 유동 측정방법 연구)

  • Cha, Jae-Eun;Ahn, Yeh-Chan;Seo, Kyung-Woo;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1559-1569
    • /
    • 2002
  • In order to investigate the characteristics of electromagnetic flowmeter in two -phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two -phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation $\Delta$ $U_{TP}$ = $\Delta$ $U_{SP}$ (l-$\alpha$) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a rent two -phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux jf. Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single -phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes.ul for identifying the flow regimes.

Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel (사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구)

  • Lee, Jun Kyoung;Lee, Kwan Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.557-566
    • /
    • 2015
  • The characteristics of a gas-liquid Taylor (slug) flow in a square micro-channel with dimensions of $600{\mu}m{\times}600{\mu}m$ are experimentally investigated in this paper. The test fluids were nitrogen and water. The superficial velocities of the liquid and gas were in the ranges of 0.01 - 3 m/s and 0.1 - 3 m/s, respectively. The bubble and liquid slug lengths, bubble velocities, and bubble frequencies for various inlet conditions were measured by analyzing optical images obtained with a high-speed camera. It was found that the measured values (bubble and liquid slug lengths, bubble velocities) were not in good agreement with the values obtained using empirical models presented in the existing literature. Modified models for the bubble and liquid slug lengths and bubble velocity are suggested and shown to be in good agreement (${\pm}20$) with the measured values. Moreover, the bubble frequency could be predicted well by the relationship between the unit cell length and its velocity.

Operating Characteristics of LED Package Heat-sink with Multi-Pin's (멀티-핀을 갖는 LED 패키지 방열장치의 동작특성)

  • Choi, Hoon;Han, Sang-Bo;Park, Jae-Youn
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.1-12
    • /
    • 2014
  • This paper is proposed to design the new heat-sink apparatus for improving the heat transfer characteristics in the power LED chip, and results of the operation characteristics were discussed. The core design is that the soldering through-hole on the FR-4 PCB board is formed to the effective heat transfer. That is directly filled with Ag-nano materials, which shows the high thermal conductivity. The heat transfer medium consisting of Ag-nano materials is classified into two structures. Mediums are called as the heat slug and the multi-pin in this work. The heat of the high temperature generated from the LED chip was directly transferred to the heat slug of the one large size. And the accumulated heat from the heat slug was quickly dissipated by the medium of the multi-pin, which is the same body with the heat slug. This multi-pin was designed for the multi-dissipation of heat by increasing the surface areas with a little pins. Subsequently, the speed of the heat transfer with this new heat-sink apparatus is three times faster than the conventional heat-sink. Therefore, the efficiency of the illuminating light will be improved by adapting this new heat-sink apparatus in the large area's LED.

The Influence of Compression Step on Products for Semi-Solid Forging (반용융 단조에서 가압 단계가 제품에 미치는 영향)

  • Choi, Jae-Chan;Park, Hyung-Jin;Lee, Byung-Mok
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1998
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near net shape products using light and hardly formable materials. Generally the SSF process is composed of slug is compressed during a certain holding time in order to completely fill the die cavity and accelerate the solidification rate. The decision of compression time is important since it can affect microstructural characteristics, mechanical properties and shape of products.. In order to determine it proper overall heat transfer coefficient between the slug and dies should be investigated. This paper presents the procedure to find the overall heat transfer coefficient between the slug and dies by nonlinear optimization of temperature and solid fraction for a cylindrical slug at compression step in closed-die semi-solid forging. In finite ele-ment heat transfer analysis release of latent heat during solidification was considered. The influence of the predicted compression time on miscrostructural characteristics mechanimcal properties and shape of products is finally investigated by experiment.

  • PDF

The hepatitis B virus X protein induced fibrosis in Huh7 cells (간암세포주 Huh7에서 Hepatitis B virus X protein에 의한 간섬유화)

  • Son, Moa;Park, Sanggyu;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • Hepatitis B virus infection can cause hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma. However the mechanism remains poorly understood. In this study, we found that Hepatitis B virus X-protein (HBx) increases vimentin, fibronectin, slug, snail and NOX4 expression. Because NOX4-mediated reactive oxygen species can increase slug and snail, which can induce fibrosis, HBx may be a key regulator of hepatic fibrosis development via NOX4 induction.

Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

  • Nguyen, Linh Thi Thao;Song, Yeon Woo;Cho, Somi Kim
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.909-914
    • /
    • 2016
  • Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing $GSK3{\beta}$-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.

T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway

  • Soon Yong Park;Hyeongrok Choi;Soo Min Choi;Seungwon Wang;Sangin Shim;Woojin Jun;Jungkwan Lee;Jin Woong Chung
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.305-310
    • /
    • 2024
  • T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelial-mesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway.