DOI QR코드

DOI QR Code

Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

  • Nguyen, Linh Thi Thao (Faculty of Biotechnology, College of Applied Life Sciences, SARI) ;
  • Song, Yeon Woo (Faculty of Biotechnology, College of Applied Life Sciences, SARI) ;
  • Cho, Somi Kim (Faculty of Biotechnology, College of Applied Life Sciences, SARI)
  • Received : 2016.10.18
  • Accepted : 2016.12.09
  • Published : 2016.12.31

Abstract

Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing $GSK3{\beta}$-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.

Keywords

References

  1. Babic, A.M., Kirreva, M.L., Kolesnikova, T.V., and Lau, L.F., (1998). CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 95, 6355-6360. https://doi.org/10.1073/pnas.95.11.6355
  2. Bakin, A.V., Tomlinson, A.K., Bhowmick, N.A., Moses, H.L., and Arteaga, C.L., (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803-36810. https://doi.org/10.1074/jbc.M005912200
  3. Barker, H.E., Chang, J., Cox, T.R., Lang, G., Bird, D., Nicolau, M., Evans, H.R., Gartland, A., and Erler, J.T., (2011). LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 71, 1561-1572. https://doi.org/10.1158/0008-5472.CAN-10-2868
  4. Boble, B.W., and Woodgett, J.R., (2007). Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs 185, 73-84. https://doi.org/10.1159/000101306
  5. Chen, C.H., Huang, L.L., Huang, C.C., Lin, C.C., Lee, Y., and Lu, F.J., (2000). Baicalein, a novel apoptotic agent for hepatoma cell lines: a potential medicine for hepatoma. Nutr. Cancer 38, 287-295. https://doi.org/10.1207/S15327914NC382_19
  6. Christofori, G., (2006). New signals from the invasive front. Nature 441, 444-450. https://doi.org/10.1038/nature04872
  7. Chuang, J.Y., Yu, N.Y., Chiang, I.P., Lai, C.H., Lin, C.D., and Tang, C.H., (2012). Cyr61 increases matrix metalloproteinase-3 expression and cell motility in human oral squamous cell carcinoma cells. J. Cell Biochem. 113, 1977-1986. https://doi.org/10.1002/jcb.24066
  8. Chung, H., Choi, H.S., Seo, E.K., Kang, D.H., and Oh, E.S., (2015). Baicalin and baicalein inhibit transforming growth factor-${\beta}1$- mediated epithelial-mesenchymal transition in human breast epithelial cells. Biochem. Biophys. Res. Commun. 458, 707-713. https://doi.org/10.1016/j.bbrc.2015.02.032
  9. De Craene, B., Van Roy, F., and Berx, G., (2005). Unraveling signaling cascades for the Snail family of transcription factors. Cell. Signal. 17, 535-547. https://doi.org/10.1016/j.cellsig.2004.10.011
  10. Dominguez, D., Montserrat-Sentis, B., Virgos-Soler, A., Guaita, S., Grueso, J., Porta, M., Puig, I., Baulida, J., Franci, C., and Garcia de Herreros, A., (2003). Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol. Cell. Biol. 23, 5078-5089. https://doi.org/10.1128/MCB.23.14.5078-5089.2003
  11. Fox, J.T., Sakamuru, S., Huang, R., Teneva, N., Simmons, S.O., Xia, M., Tice, R.R., Austin, C.P., Myung, K., (2012). Highthroughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proc. Natl. Acad. Sci. USA 109, 5423-5428. https://doi.org/10.1073/pnas.1114278109
  12. Grezeszkiewiz, T.M., Linder, V., Chen, N., Lam, S.C., and Lau, L.F., (2002). The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulate chemotaxis through integrin alpha(6)beta(1) and cell surface heparin sulfate proteoglycans. Endocrinology 143, 1441-1450. https://doi.org/10.1210/endo.143.4.8731
  13. Grille, S.J., Bellacosa, A., Upson, J., Klein-Szanto, A.J., van Roy, F., Lee-Kwon, W., Donowitz, M., Tsichlis, P.N., and Larue, L., (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 63, 2172-2178.
  14. Haque, I., Mehta, S., Majumder, M., Dhar, K., De, A., McGregor, D., Van Veldhuizen, P.J., Banerjee, S.K., and Banerjee, S., (2011). Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis. Mol. Cancer 10, 8-25. https://doi.org/10.1186/1476-4598-10-8
  15. Hayashi, K., Fong, K.S., Mercier, F., Boyd, C.D., Csiszar, K., and Hayashi, M., (2004). Comparative immunocytochemical localization of lysyl oxidase (LOX) and the lysyl oxidase-like (LOXL) proteins: changes in the expression of LOXL during development and growth of mouse tissues. J. Mol. Histol. 35, 845-855. https://doi.org/10.1007/s10735-004-2340-1
  16. Hou, C.H., Lin, F.L., Hou, S.M., and Liu, J.F., (2014). Cyr61 promotes epithelial-mesenchymal transition and tumour metastasis of osteosarcoma by Raf-1/MEK/ERK/Elk-1/TWIST-1 signaling pathway. Mol. Cancer 13, 236-249. https://doi.org/10.1186/1476-4598-13-236
  17. Janicke, R.U., (2009). MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res. Treat. 117, 219-221. https://doi.org/10.1007/s10549-008-0217-9
  18. Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., Dargemont, C., de Herreros, A.G., Bellacosa, A., and Larue, L., (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchymal transition. Oncogene 26, 7445-7456. https://doi.org/10.1038/sj.onc.1210546
  19. Kirschmann, D.A., Seftor, E.A., Fong, S.F., Nieva, D.R., Sullivan, C.M., Edwards, E.M., Sommer, P., Csiszar, K., and Hendrix, M.J., (2002). A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res. 62, 4478-4483.
  20. Kuo, H.M., Tsai, H.C., Lin, Y.L., Yang, J.S., Huang, A.C., Yang, M.D., Hsu, S.C., Chung, M.C., Gibson Wood, W., and Chung, J.G., (2009). Mitochondrial-dependent caspase activation pathway is involved in baicalein-induced apoptosis in human hepatoma J5 cells. Int. J. Oncol. 35, 717-724.
  21. Lee, K.B., Byun, H.J., Park, S.H., Park, C.Y., Lee, S.H., and Rho, S.B., (2012). CYR61 controls p53 and NF-${\kappa}B$ expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett. 315, 86-95. https://doi.org/10.1016/j.canlet.2011.10.016
  22. Lin, M.T., Zuon, C.Y., Chang, C.C., Chen, S.T., Chen, C.P., Lin, B.R., Wang, M.Y., Jeng, Y.M., Chang, K.J., Lee, P.H., et al. (2005). Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin. Cancer Res. 11, 5809-5820. https://doi.org/10.1158/1078-0432.CCR-04-2639
  23. Li-Weber, M., (2009). New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 35, 57-68. https://doi.org/10.1016/j.ctrv.2008.09.005
  24. Ma, X., Yan, W., Dai, Z., Gao, X., Ma, Y., Xu, Q., Jiang, J., and Zhang, S., (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/${\beta}$-catenin pathway. Drug Des. Devel. Ther. 10, 1419-1441.
  25. Moreno-Bueno, G., Salvador, F., Martin, A., Floristan, A., Cuevas, E.P., Santos, V., Montes, A., Morales, S., Castilla, M.A., Rojo-Sebastián, A., et al. (2011). Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol. Med. 3, 528-544. https://doi.org/10.1002/emmm.201100156
  26. Nieto, M.A., (2002). The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155-166. https://doi.org/10.1038/nrm757
  27. Peinado, H., Del Carmen Iglesias-de la Cruz, M., Olmeda, D., Csiszar, K., Fong, K.S., Vega, S., Nieto, M.A., Cano, A., and Portillo, F., (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 24, 3446-3458. https://doi.org/10.1038/sj.emboj.7600781
  28. Peinado, H., Moreno-Bueno, G., Hardisson, D., Perez-Gomez, E., Santos, V., Mendiola, M., de Diego, J.I., Nistal, M., Quintanilla, M., Portillo, F., et al. (2008). Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res. 68, 4541-4550. https://doi.org/10.1158/0008-5472.CAN-07-6345
  29. Po, L.S., Chen, Z.Y., Tsang, D.S., and Leung, L.K., (2002). Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells. Cancer Lett. 187, 33-40. https://doi.org/10.1016/S0304-3835(02)00355-5
  30. Tan, T.W., Yang, W.H., Lin, Y.T., Hsu, S.F., Li, T.M., Kao, S.T., Chen, W.C., Fong, Y.C., and Tang, C.H., (2009). Cyr61 increases migration and MMP-13 expression via alphavbeta3 integrin, FAK, ERK and AP-1-dependent pathway in human chondrosarcoma cells. Carcinogenesis 30, 258-268. https://doi.org/10.1093/carcin/bgn284
  31. Tran, T.A., Krishnamoorty, K., Cho, S.K., and Kim, S.J., (2016). Inhibitory effect of zinc sulfide nanoparticles towards breast cancer stem cell migration and invasion. J. Biomed. Nanotechnol. 12, 329-336. https://doi.org/10.1166/jbn.2016.2187
  32. Wang, Y., and Zhou, B.P., (2001). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin. J. Cancer 30, 603-611.
  33. Wang, L., Ling, Y., Chen, Y., Li, C.L., Feng, F., You, Q.D., Lu, N., and Guo, Q.L. (2010). Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett. 297, 42-48. https://doi.org/10.1016/j.canlet.2010.04.022
  34. Wu, B., Li, J., Huang, D., Wang, W., Chen, Y., Liao, Y., Xiaowei, T., Hongfu, X., and Faqing, T., (2011). Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells. BMC Cancer 11, 527-35. https://doi.org/10.1186/1471-2407-11-527
  35. Xie, D., Nakachi, K., Wang, H., Elashoff, R., and Koeffler, H.P., (2001). Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 61, 8917-8923.
  36. Zhang, F., Phiel, C.J., Spece, L., Gurvich, N., and Klein, P.S., (2003). The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by betaadrenergic receptor stimulation in cardiac myocytes. J. Biol. Chem. 278, 33067-33077. https://doi.org/10.1074/jbc.M212635200
  37. Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., and Hung, M.C., (2004). Dual regulation of Snail by GSK-3betamediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931-940. https://doi.org/10.1038/ncb1173

Cited by

  1. Biotransformation of Chrysin to Baicalein: Selective C6-Hydroxylation of 5,7-Dihydroxyflavone Using Whole Yeast Cells Stably Expressing Human CYP1A1 Enzyme vol.65, pp.34, 2017, https://doi.org/10.1021/acs.jafc.7b02690
  2. Polymorphisms of the CYR61 gene in patients with acute myeloid leukemia in a Han Chinese population vol.97, pp.34, 2018, https://doi.org/10.1097/MD.0000000000011963
  3. Lysyl Oxidase–like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer vol.77, pp.21, 2016, https://doi.org/10.1158/0008-5472.can-16-3152
  4. Quantitative Proteomics Implicates Rictor/mTORC2 in Cell Adhesion vol.17, pp.10, 2018, https://doi.org/10.1021/acs.jproteome.8b00218
  5. Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway vol.22, pp.1, 2018, https://doi.org/10.3233/cbm-170673
  6. Transition from normal to cancerous cell by precancerous niche (PCN) induced chronic cell-matrix stress vol.2, pp.None, 2019, https://doi.org/10.1051/fopen/2018996
  7. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma vol.9, pp.2, 2016, https://doi.org/10.7150/thno.27654
  8. Controlling metastatic cancer: the role of phytochemicals in cell signaling vol.145, pp.5, 2016, https://doi.org/10.1007/s00432-019-02892-5
  9. Structural Insight into the In Vitro Anti-Intravasative Properties of Flavonoids vol.87, pp.3, 2016, https://doi.org/10.3390/scipharm87030023
  10. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation vol.40, pp.9, 2016, https://doi.org/10.1038/s41401-019-0240-x
  11. KRas-ERK signalling promotes the onset and maintenance of uveal melanoma through regulating JMJD6-mediated H2A.X phosphorylation at tyrosine 39 vol.47, pp.1, 2016, https://doi.org/10.1080/21691401.2019.1673764
  12. Baicalein enhances the antitumor efficacy of docetaxel on nonsmall cell lung cancer in a β‐catenin‐dependent manner vol.34, pp.1, 2016, https://doi.org/10.1002/ptr.6501
  13. The interaction between cucurbit[8]uril and baicalein and the effect on baicalein properties vol.16, pp.None, 2020, https://doi.org/10.3762/bjoc.16.9
  14. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy vol.215, pp.None, 2016, https://doi.org/10.1016/j.pharmthera.2020.107633