In summer, the water colder than 14$^{\circ}C$ exists near the bottom in the South Sea of Korea. We investigate the characteristics and the origin of this bottom cold water by the analysis of temperature and salinity data. The salinity of the bottom cold water in June and August is 33.4∼34.0% which is lower by about 0.6% than that of cold water in April. In 1983, the water in August is colder than in June. These facts indicate that the bottom cold water in summer is not the same one formed in the South Sea in winter, but flowed into the area from the neighbouring seas. Based upon frequency distribution of the occurrence of the cold water and temperature and salinity analysis of waters in the Cheju Strait, it is suggested that the origin of the bottom cold water is west of the Cheju Strait.
Periodic characters of water temperature in the regions of the Mishima and the Okinoshima were derived through the analysis of the five days interval data during 1914 to 1970 mainly. In terms of ten days mean temperatures, annual variation function of the Mishima region, Korea Strait, is F($\theta_d$)=17.45-5.34 cos $\theta_d$-3.77 sin $\theta_d$+0.62 sin $2\theta_d$ -0.52 sin $3\theta_d$, where $\theta_d$=$\frac{\pi}{18}$(d-2), d is the order of ten days period 1 to 36. And in the region of Okinoshima, Tsushima Strait, we find F($\theta_d$)=18.88-5.39 cos $\theta_d$-3.60 sin $\theta_d$+0.52 sin $2\theta_d$. The annual mean temperature is 17.4$^{\circ}C$ in the Mishima region, 18.9$^{\circ}C$ in the Okinoshima region, and the amplitudes of annual variation functions are 7$^{\circ}C$ in both regions with minimum temperature in the middle ten days of February, maximum in the middle ten days of August. The long term variations of surface water temperature with 12 5 years period were observed in the annual mean temperature, monthly mean temperatures and the fixed day temperatures of every year. In addition to these, relatively short term variations were also found significant periods of 3 years, 4 years and 2 years, respectively.
To evaluate the consequences of possible fisheries regulations of anchovy Engraulis japonicus in the Korea Strait, we developed and applied a simulation-based yield-per-recruit (Y/R) model that considered temperature-dependent growth and size-dependent mortality, covering the egg to adult stages. We projected changes in commercial yield and egg production of anchovy with respect to varying biological reference points of 1) the instantaneous fishing mortality, 2) the minimum fork length of anchovy allowed to catch for protecting smaller anchovy ($L_{c,min}$), and 3) the maximum fork length allowed to catch for protecting bigger anchovy ($L_{c,max}$). Our Y/R model showed that the anchovy yield will be maximized at ca. $1.4{\times}10^6tons$ when $L_{c,min}$ ranges between 42-60 mm or at ca. $0.8{\times}10^6tons$ when $L_{c,max}$ ranges from 88-160 mm. At $L_{c,min}=30mm$, the present minimum length of catch, our simulations indicated that the anchovy yield can reach a maximum of $1.2{\times}10^6tons$ in the long-term when the present fishing effort, which annually yields ca. $0.2{\times}10^6tons$ of anchovy, can be increased by a factor of 28. We expect that our simulation-based Y/R model can be applied to other commercially-important small pelagic species in which the traditional Beverton-Holt Y/R model is difficult to apply.
The influx of marine exotic and alien species is disrupting marine ecosystems and aquaculture. Herdmania momus, reported as an invasive species, is distributed all along the coast of Jeju Island and has been confirmed to be distributed and spread to Busan. The potential habitats and distribution of H. momus were estimated using the maximum entropy (MaxEnt) model, quantum geographic information system (QGIS), and Bio-ocean rasters for analysis of climate and environment(Bio-ORACLE), which can predict the distribution and spread based only on species occurrence data using species distribution model (SDM). Temperature and salinity were selected as environmental variables based on previous literature. Additionally, two different representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were set up to estimate future and potential habitats owing to climate change. The prediction of potential habitats and distribution for H. momus using MaxEnt confirmed maximum temperature as the highest contributor(77.1%), and mean salinity, the lowest (0%). And the potential habitats and distribution of H. momus were the highest on Jeju Island, and no potential habitat or distribution was seen in the Yellow Sea. Different RCP scenarios showed that at RCP 4.5, H. momus would be distributed along the coast of Jeju Island in the year 2050 and that the distribution would expand to parts of the Korea Strait by the year 2100. RCP 8.5, the distribution in 2050 is predicted to be similar to that at RCP 4.5; however, by 2100, the distribution is predicted to expand to parts of the Korea Strait and the East Sea. This study can be utilized as basic data to effectively control the ecological injuries by H. momus by predicting its spread and distribution both at present and in the future.
Based on the data collected during January of 1963, 1964 and 1965, heat transfer from the sea to the air over the south-western part of the Japan Sea was evaluated by the formula of Jacobs. The mean sensible heat transfer and the rate of evaporation in the mild winter of 1964 were 360ly day$\^$-1/ and 8.1mm day$\^$-1/, respectively. However, these values increased as much as 690ly day$\^$-1/ and 14.4mm day$\^$-1/ in the severe winter of 1963. The heat hudget of the Japan Sea in January were related to the magnitude of cold water mass formed in August in the Korea Strait.
Kim, Dong-Seon;Kang, Sung-Ho;Kim, Dong-Yup;Lee, Youn-Ho;Kang, Young-Chul
Ocean and Polar Research
/
v.23
no.2
/
pp.77-95
/
2001
Temperature, salinity, nutrients, chlorophyll-a, and primary production were measured within the upper 200 m water column in the area around the South Shetland Islands in January, 2000. Surface temperature was relatively high in the Drake Passage north of the South Shetland Islands and low in the northeastern area of the Antarctic Peninsula. In contrast, surface salinity was low in the Drake Passage and increased toward the Antarctic Peninsula, reaching the maximum value in the northeastern area of the Antarctic Peninsula. Surface nutrients were low in the Drake Passage and high in the area near the South Shetland Islands. Surface chlorophyll-a was also low in the Drake Passage and near the Antarctic Peninsula and high in the area of the northern King George Island. The study area could be classified as four geographical zones based on the characteristic shape of the T/S diagrams;the Drake Passage, the Bransfield Strait, the mixed zone, and the Weddell Sea. Each geographical zone showed apparently different physical, chemical, and biological characteristics. Phytoplankton biomass was relatively low in the Drake Passage and the Weddell Sea and high in the Bransfield Strait and the mixed zone. The low phytoplankton biomass in the Weddell Sea could be explained by the low water temperature and deep surface mixing down to 200 m. The high grazing pressure and low availability of iron could be responsible for the low phytoplankton biomass in the Drake Passage.
The response of sea levels to a typhoon in the north Japanese coast in the Japan Sea is investigated by using hourly ses level data($1966{\sim}1986$) and a numerical shallow water model with high resolution($5'{\times}5'$). The observed sea level analysis shows (1) progressive waves exist between Simonoseki(SS) and Maizuru(MZ) with the mean phase speed of about 4 m/s during the passage of the typhoon, (2) the phase speed between Sasebo(SB) and HK(Hakata) is slower(about 1.7 m/s), and (3) the maximum sea level at HK is achieved about 0.5 day later than that of SS. In many aspects, the numerical model results correspond well to the above observed features. In the model the progressive waves are identified as a topographic wave with the phase speed of about 4 m/s. Before the typhoon passes through the Korea Strait/ the Tsushima Strait, the wave propagations along the Japanese coast are significantly influenced by the southwestward coastal jet induced by the wind stress parallel to the coast. The waves start to propagate northeastward along the coast when the coastal jet is weakened.
Hydrographic data taken at stations spaced 8-16 nautical miles in the Cheju Strait and the southeastern part of the Yellow Sea in June 1980 and August 1981 show for the first time that oceanic water of high temperature and high salinity exists within 20 km from the northern and western coast of Cheju-Do. It is confirmed that the low salinity trough in the sea around Cheju-Do originates from the river plume on the Yantze Bank. The salinity trough separates the high temperature and high salinity water around Cheju-Do from the surface water of the Yellow Sea and below the seasonal thermocline this distance water meets the Yellow Sea Cold Water forming a thermal front. The Yellow Sea Cold Water seems to spread southward along the Yantze Bank centered at the isobath of 70 m. Its characteristics also appear in the northern part of the Cheju Strait. these complex structures contradict the yellow Sea Warm current suggested by Uda 1934), which is supposed to flow northward into the Yellow Sea along the western coast of Korea. Our data show that dense hydrographic surveys in space and time are prerequisite to understand the circulation around Cheju-Do.
Studies on the circulation and water masses in the continental shelf break region of the East China Sea are Summerized as follows : 1. The main stream of the Kuroshio flowing north-east near $29^{\circ}N\;Lat\;127^{\circ}E$ tong of the East China Sea in summer is narrow in width. Moving toward east, it becomes twice as wide in Tokora Strait, Japan. 2. In the main stream area of the Kuroshio, the surface Waters in the Upper layer (0-250m) are influenced by the coastal waters of China, and the counter current submerges under the surface water. Therefore, the mixing waters are found in its intermediate layer. 3. Water mass between Amami Island and the continental shelf of the East China Sea consists of main stream water, counter current water, gyration water and mixed water with coastal waters. 4. The maximum velocity of current in this waters was 139cm/sec. The volume transport was estimated approximately as $24.2\;\times\;10^6m^3/sec$. It was less than $33\;\times\;10^6m^3/sec$ in the region between Okinawa and continental shelf of the East China Sea. 5. Surface waters east of $29^{\circ}N\;Lat\;128^{\circ}E$ Long flows toward Amami Island, Okinawa Island, and Hachi Ju San Island, while those west of the region flow toward the Korea-strait, Cheju Island, coastal waters of Kyusyu, and the Pacific Ocean through Tokora Strait. The velocity of the current was estimated approximately as $0.3\~0.5$ miles per hour. 6. The bottom waters in the continental shelf break region flow toward the Korea Strait, Cheju Island and the coastal water of Kyusyu, while that of the continental shelf flows toward the Yellow Sea, 7, The characteristics of the Kuroshio water is changed remarkably by the mixing with the coastal water of China.
Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.