• Title/Summary/Keyword: Kinematic constraint

Search Result 112, Processing Time 0.021 seconds

Kinematic Optimal Design of a Stewart Platform based on Dexterity (조작성에 근거한 스튜엇트 플렛폼의 기구학적 최적설계)

  • 김한성;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.771-777
    • /
    • 1996
  • In this paper, an optimal design technique for a Stewart platform has been presented considering workspace and dexterity. In the definition of a design objective function, previously suggested dexterity index was used to be maximized. In this optimal design process, the workspace can be used as design constraint when necessary. An algorithm for workspace computation has been briefly described. Finally, optimal desigm results for some example cases have been presented.

  • PDF

CAD System of New Concept to Support Top-Down Approach in Design (하향식 설계방식을 지원하는 새로운 개념의 CAD 시스템)

  • 김성환;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1604-1618
    • /
    • 1995
  • In the process of mechanical assembly design, assembly modeling systems have been used mainly for the design verification before manufacturing by enabling to check the interference and/ or the dynamic and kinematic performance. However, the conventional assembly modeling systems have a shortcoming that they can not be used in the initial design stage but can be used only after the design is fully completed. In other words conventional assembly modeling systems provide bottom-up modeling which means that the detailed modeling of components must precede the definition of relationships between them. To resolve this problem, an assembly modeling system is proposed to provide a top-down modeling environment in which components and assembly can be modeled simultaneously. To this end, an assembly data structure suitable for top-down assembly modeling has been established. Feature positioning Module(FPM) using geometric constraints has been also developed. The Sekective Solving Method proposed for FPM is based on the priority between the constraint equations and enables the designer's intent expressed by geometric constraints to be maintained throughout the whole modeling process. Finally, the feature based modeling technique using two-level features has been developed. Two-level features include an abstract model and a detailed model in a merged form in non-manifold data frame.

Experimental Assessment on Accuracy of Kinematic Coordinate Estimation for CORS by GPS Medium-range Baseline Processing Technique (GPS 상시관측소 동적 좌표추정을 위한 중기선해석 정확도의 실험적 분석)

  • Cho, Insoo;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.79-90
    • /
    • 2016
  • The study has purposed in evaluating experiences for achievable accuracy and precision of time series at 3-D coordinates. It has been estimated from the kinematic medium-range baseline processing of Continuously Operating Reference Stations (CORS) for the potential application of crustal displacement analysis during an earthquake event. To derive the absolute coordinates of local CORS, it is highly recommended to include some of oversea country references, since it should be compromised of an observation network of the medium-range baselines within the length range from tens of kilometers to about 1,000 kilometers. A data processing procedure has reflected the dynamics of target stations as the parameter estimation stages, which have been applied to a series of experimental analysis in this research at the end. From the analysis of results, we could be concluded in that the subcentimeters-level of positioning accuracy and precision can be achievable. Furthermore, the paper summarizes impacts of satellite ephemeris, data lengths and levels of initial coordinate constraint into the positioning performance.

Designs of Pipe Fitting with Three Dimensional Measurement and Kinematic Constrained Equations (파이프 체결을 위한 3차원 측정 및 기구적 구속조건 기반의 설계 방식)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.54-61
    • /
    • 2022
  • Ship is a huge system including a variety of pipe arrangements. Pipes are installed according to the design layout, however the end poistion of pipes are not well matched owing to its measurement and construction errors. In this situation, the customized pipe fitting is frequently designed to connect with both pipes, the position of which are manually measured. This paper focused that these two coordinates are measured by point cloud from RGBD sensor and the relative transformation induced by positional and orientational differences is calculated by inverse kinematics in robotics theory. Therefore, the result applies for the methodology of the pipe connection design. The pipe coordinate that is estimated by the matching and the probabilistic RANSAC method will be verified by experiments. The kinematic design parameters are computationally calculated by using the minimum degree of freedom that connects both pipe coordinates.

New Formulation Method for Reducing the Direct Kinematic Complexity of the 3-6 Stewart-Gough Platform

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • This paper presents a new formulation to simplify the three resulting constraint equations of the direct kinematics of the 3-6 (Stewart-Gough) Platform. The conventional direct kinematics of the 3-6 Platform has been formulated through complicated steps with trigonometric functions in three angle variables and thus results in the computational burden. In order to reduce the formulation complexity, we replace an angle variable into a length one and express three connecting joints on the moving platform in the same frame. The proposed formulation yields considerable abbreviation of the number of the calculation terms involved in the direct kinematics. It is verified through a series of simulation results.

Forward Kinematic Analysis of Casing Oscillator (케이싱 오실레이터의 순기구학 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.

Planning of Compliant Motions for Fixture Loading

  • Yu, Kyeonah
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Fixtures are used in almost all phases of machining and assembly to position and hold a part accurately. The class of fixture which consists of 3 locators and 1 clamp(3L/1C) is known as the minimal set that can provide form closure which is a kinematic constraint condition for preventing all planar motions. This type of fixtures has advantages in terms of the number of fixture elements required, the time for clamping, and so on. However it is not widely used in industry because reliable loading scheme has not been reported. In this paper, we propose a method to load the class of 3L/1C fixtures using compliant motions. The planner is developed for synthesizing compliant motions to achieve precise final fixture configuration in the presence of sensing and control uncertainties. A novel approach to eliminate uncertainty in part orientation by adding one extra fixture element called an aligning pin is proposed.

  • PDF

Approximate Function Method for Real Time Multibody Vehicle Dynamics Model (근사함수방법을 이용한 실시간 다물체 차량 동역학 모델)

  • Kim, Sung-Soo;Lee, Chang-Ho;Jeong, Wan-Hee;Lee, Sun-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2006
  • An approximate function approach has been developed using the subsystem synthesis method for real-time multibody vehicle dynamics models. In this approach, instead of solving loop closure constraint equations of the suspension linkage, approximate functions are used. The approximate function represents the functional relationship between dependent coordinates and independent coordinates of the suspension subsystem. This kinematic relationship is also included in the suspension subsystem equations of motion. Different order of polynomial functions are tried to find out the best candidate functions. The proposed method is also compared with the conventional subsystem synthesis method to verify its efficiency and accuracy.

Construction of System Jacobian in the Equations of Motion Using Velocity Transformation Technique (속도변환법을 이용한 운동방정식의 시스템자코비안 구성)

  • Lee, Jae-Uk;Son, Jeong-Hyeon;Kim, Gwang-Seok;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1966-1973
    • /
    • 2001
  • The Jacobian matrix of the equations of motion of a system using velocity transformation technique is derived via variation methods to apply the implicit integration algorithm, DASSL. The concept of generalized coordinate partitioning is used to parameterize the constraint set with independent generalized coordinates. DASSL is applied to determine independent generalized coordinates and velocities. Dependent generalized coordinates, velocities, accelerations and Lagrange multipliers are explicitly retained in the formulation to satisfy all of the governing kinematic and dynamic equations. The derived Jacobian matrix of a system is proved to be valid and accurate both analytically and through solution of numerical examples.

Dynamically-Correct Automatic Transmission Modeling (동적 특성을 고려한 자동변속기의 모델링)

  • 김정호;조동일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.73-85
    • /
    • 1997
  • An automatic transmission is an important element of automotive power systems that allows a driving convenience. Compared to a manual transmission, however, it has a few problems in efficiency, shift feel, and maintenance. To improve these, it is imperative to understand the dynamics of automatic transmissions. This paper develops a dynamically-correct model of an automatic transmission, using the bond graph method. The bond graph method is ideally suited for modeling power systems, because the method is based on generalized power variables. The bond graph method is capable of providing correct dynamic constraints and kinematic constraints, as well as the governing differential equations of motion. The bond graph method is applied to 1-4 in-gear ranges, as well as various upshifts and downshifts of an automatic transmission, which allows an accurate simulation of an automatic transmission. Conventional automatic transmission models have no dynamic constraint, which do not allow correct simulation studies.

  • PDF