• Title/Summary/Keyword: Kernel function estimation

Search Result 107, Processing Time 0.018 seconds

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

The shifted Chebyshev series-based plug-in for bandwidth selection in kernel density estimation

  • Soratja Klaichim;Juthaphorn Sinsomboonthong;Thidaporn Supapakorn
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.337-347
    • /
    • 2024
  • Kernel density estimation is a prevalent technique employed for nonparametric density estimation, enabling direct estimation from the data itself. This estimation involves two crucial elements: selection of the kernel function and the determination of the appropriate bandwidth. The selection of the bandwidth plays an important role in kernel density estimation, which has been developed over the past decade. A range of methods is available for selecting the bandwidth, including the plug-in bandwidth. In this article, the proposed plug-in bandwidth is introduced, which leverages shifted Chebyshev series-based approximation to determine the optimal bandwidth. Through a simulation study, the performance of the suggested bandwidth is analyzed to reveal its favorable performance across a wide range of distributions and sample sizes compared to alternative bandwidths. The proposed bandwidth is also applied for kernel density estimation on real dataset. The outcomes obtained from the proposed bandwidth indicate a favorable selection. Hence, this article serves as motivation to explore additional plug-in bandwidths that rely on function approximations utilizing alternative series expansions.

On Practical Efficiency of Locally Parametric Nonparametric Density Estimation Based on Local Likelihood Function

  • Kang, Kee-Hoon;Han, Jung-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.607-617
    • /
    • 2003
  • This paper offers a practical comparison of efficiency between local likelihood approach and conventional kernel approach in density estimation. The local likelihood estimation procedure maximizes a kernel smoothed log-likelihood function with respect to a polynomial approximation of the log likelihood function. We use two types of data driven bandwidths for each method and compare the mean integrated squares for several densities. Numerical results reveal that local log-linear approach with simple plug-in bandwidth shows better performance comparing to the standard kernel approach in heavy tailed distribution. For normal mixture density cases, standard kernel estimator with the bandwidth in Sheather and Jones(1991) dominates the others in moderately large sample size.

Variable Bandwidth Selection for Kernel Regression

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 1994
  • In recent years, nonparametric kernel estimation of regresion function are abundant and widely applicable to many areas of statistics. Most of modern researches concerned with the fixed global bandwidth selection which can be used in the estimation of regression function with all the same value for all x. In this paper, we propose a method for selecting locally varing bandwidth based on bootstrap method in kernel estimation of fixed design regression. Performance of proposed bandwidth selection method for finite sample case is conducted via Monte Carlo simulation study.

  • PDF

On Estimating the Hazard Rate for Samples from Weighted Distributions

  • Ahmad, Ibrahim A.
    • International Journal of Reliability and Applications
    • /
    • v.1 no.2
    • /
    • pp.133-143
    • /
    • 2000
  • Data from weighted distributions appear, among other situations, when some of the data are missing or are damaged, a case that is important in reliability and life testing. The kernel method for hazard rate estimation is discussed for these data where the basic large sample properties are given. As a by product, the basic properties of the kernel estimate of the distribution function for data from weighted distribution are presented.

  • PDF

Estimating Variance Function with Kernel Machine

  • Kim, Jong-Tae;Hwang, Chang-Ha;Park, Hye-Jung;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.383-388
    • /
    • 2009
  • In this paper we propose a variance function estimation method based on kernel trick for replicated data or data consisted of sample variances. Newton-Raphson method is used to obtain associated parameter vector. Furthermore, the generalized approximate cross validation function is introduced to select the hyper-parameters which affect the performance of the proposed variance function estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

Kernel method for autoregressive data

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.949-954
    • /
    • 2009
  • The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

  • PDF

Jackknife Kernel Density Estimation Using Uniform Kernel Function in the Presence of k's Unidentified Outliers

  • Woo, Jung-Soo;Lee, Jang-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1995
  • The purpose of this paper is to propose the kernel density estimator and the jackknife kernel density estimator in the presence of k's unidentified outliers, and to compare the small sample performances of the proposed estimators in a sense of mean integrated square error(MISE).

  • PDF

Estimation of kernel function using the measured apparent earth resistivity

  • Kim, Ho-Chan;Boo, Chang-Jin;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.97-104
    • /
    • 2020
  • In this paper, we propose a method to derive the kernel function directly from the measured apparent earth resistivity. At this time, the kernel function is obtained through the process of solving a nonlinear system. Nonlinear systems with many variables are difficult to solve. This paper also introduces a method for converting nonlinear derived systems to linear systems. The kernel function is a function of the depth and resistance of the Earth's layer. Being able to derive an accurate kernel function means that we can estimate the earth parameters i.e. layer depth and resistivity. We also use various Earth models as simulation examples to validate the proposed method.