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Abstract
Kernel density estimation is a prevalent technique employed for nonparametric density estimation, enabling

direct estimation from the data itself. This estimation involves two crucial elements: selection of the kernel
function and the determination of the appropriate bandwidth. The selection of the bandwidth plays an important
role in kernel density estimation, which has been developed over the past decade. A range of methods is available
for selecting the bandwidth, including the plug-in bandwidth. In this article, the proposed plug-in bandwidth is
introduced, which leverages shifted Chebyshev series-based approximation to determine the optimal bandwidth.
Through a simulation study, the performance of the suggested bandwidth is analyzed to reveal its favorable
performance across a wide range of distributions and sample sizes compared to alternative bandwidths. The
proposed bandwidth is also applied for kernel density estimation on real dataset. The outcomes obtained from the
proposed bandwidth indicate a favorable selection. Hence, this article serves as motivation to explore additional
plug-in bandwidths that rely on function approximations utilizing alternative series expansions.
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1. Introduction

Density estimation is indeed the process of constructing an estimate of the probability density function
(pdf) from an available data. This estimation not only represents the data distribution but also pro-
vides summary statistics such as the mean, median, variance, moments and quantiles. Furthermore,
density estimates provide information about distribution characteristics, including skewness, kurtosis,
and multimodality within the data. The estimation of pdf is a fundamental concept in statistics and
a widely researched topic. There are two commonly methods for density estimation: parametric and
nonparametric methods. The parametric method assumes that the data is drawn from a known distri-
bution, whereas the nonparametric method aims to estimate the density function directly from the data.
Several nonparametric density estimation techniques commonly include the histogram, naı̈ve density
estimator, nearest neighbor method, and orthogonal series estimator. Kernel density estimation (KDE)
is a widely used nonparametric density estimation. The KDE relies on the kernel function which de-
termines the weight assigned to each data point, and the bandwidth which controls the smoothness of
the estimate. Hence, the selection of the bandwidth is the most crucial in the context of kernel density
estimation.
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The selection of the bandwidth is a critical issue that arises in the context of KDE, as the per-
formance of the KDE depends on the chosen bandwidth. A small bandwidth value results in an
undersmoothed density, while a large bandwidth value leads to an oversmoothed density (Gramacki,
2018). There are various methods to determine a bandwidth for KDE. The primary categories of band-
widths for KDE include rules-of-thumb (ROT), cross-validation (CV), and plug-in (PI). The plug-in
method has been demonstrated to offer excellent performance in many cases. Due to its demon-
strated excellent performance, the plug-in method is the common first choice in practical applications.
However, there is still room for further improvement in its implementation (Wand and Jones, 1995).
Plug-in bandwidths are operated on the straightforward concept of substituting estimated values of
the unknown quantities into formulas for achieving the asymptotically optimal bandwidth.

In order to overcome optimal bandwidth, this study introduces the proposed plug-in bandwidth.
This bandwidth leverages the first kind shifted Chebyshev polynomials, providing a solution to the
problem. The effectiveness of the methods relies on the estimation of integrated squared density
derivative functionals, a subject that has been explored by many researchers. Silverman (1986) pro-
vided a comprehensive overview of density estimation techniques, including discussions on band-
width selection and the role of integrated squared density derivative functionals. Sheather and Jones
(1991) discussed a data-driven method for bandwidth selection in kernel density estimation, which re-
lated to integrated squared density derivative functionals. Raykar and Duraiswami (2006) developed
the algorithms for estimating density derivatives using the univariate Gaussian kernel. These algo-
rithms are utilized to calculate the optimal bandwidth for kernel density estimation. Tenreiro (2011,
2020) proposed direct plug-in bandwidth for the KDE based on the Fourier series and the Hermite
series. In a recent study, Dharmani (2022) introduced a bandwidth selection by employing the near
Gaussian assumption. This assumption enables the use of the Gram-Charlier A series as an approxi-
mation to the function for the purpose of estimating its density derivative. The objective of this paper
is to derive a bandwidth by using the first kind shifted Chebyshev polynomials as an approximation to
the density function. This is aimed at estimating the integrated squared density derivative functionals.

The remaining sections of this article are organized as follows. Section 2 provides an overview of
the fundamental properties of kernel density estimation. In Section 3, various methods for bandwidth
selection are discussed. These methods include least squares cross-validation bandwidth, an improved
version of rules of thumb bandwidth, and the Sheather and Jones plug-in bandwidth. Section 4 offers
a brief definition of the first kind shifted Chebyshev polynomials, then utilizes them to approximate
the underlying density function, and finally presents the proposed plug-in bandwidth based on this es-
timator. Section 5 presents a simulation study of the proposed bandwidth, examining its performance
under different distributions and sample sizes using the R programming language. Additionally, Sec-
tion 6 applies the proposed bandwidth to real dataset. Finally, Section 7 concludes the article with a
summary of the findings.

2. Kernel density estimation

The kernel density estimator for a random sample X1, X2, . . . , Xn drawn from a common and typically
unknown density f (x), as defined by Rosenblatt (1956) and Parzen (1962), is expressed as

f̂ (x; h) =
1
nh

n∑
i=1

K
( x − Xi

h

)
, (2.1)

where K (x) is the kernel function and h is the bandwidth with positive value.
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The kernel function K (x) plays as the weight function and satisfies the following properties:
K (x) ≥ 0,K (x) = K (−x) ,

∫
K (x) dx = 1,

∫
xK (x) dx = 0 and k2 =

∫
x2K (x) dx , 0. The band-

width h determines the level of smoothness of the density estimate.
In practice, it is common to consider a global error criterion that measures the distance between the

estimated density function f̂ (x; h) and the true density function f (x). One such error criterion is the
integrated squared error (ISE) given by ISE ( f̂ (x; h)) =

∫ ∞
−∞

[ f̂ (x; h) − f (x)]2dx. A more appropriate
approach would involve analyzing the expected value of this quantity, known as the mean integrated
square error (MISE), which is defined as

MISE
(

f̂ (x; h)
)

= E
∫ ∞

−∞

[
f̂ (x; h) − f (x)

]2
dx

=

∫ ∞

−∞

Bias2
(

f̂ (x; h)
)

dx +

∫ ∞

−∞

Var
(

f̂ (x; h)
)

dx

=
1
4

h4k2
2

∫ (
f ′′ (x)

)2 dx +
1

nh
k0 + o

{
(nh)−1 + h4

}
, (2.2)

where k0 =
∫

(K (x))2 dx and k2 =
∫

x2K (x) dx (Gramacki, 2018).
The assumptions are f (x) is assumed to be sufficiently smooth: Its second derivative f ′′(x) is

bounded, continuous and square integrable. Also, if (nh)−1 → 0 and h → 0 as n → ∞ then
MISE f̂ (x; h)→ 0. It obtains the asymptotic mean integrated square error (AMISE) as follows:

AMISE f̂ (x; h) =
1
4

h4k2
2

∫ (
f ′′ (x)

)2 dx +
1
nh

k0

=
1
4

h4k2
2θ2 +

1
nh

k0 , (2.3)

where θ2 =
∫

( f ′′ (x))2 dx, k0 =
∫

(K (x))2 dx and k2 =
∫

x2K (x) dx.

3. Bandwidth selection

Several methods are available for determining appropriate bandwidth for KDE. The three main types
of bandwidths are as follows: Cross-validation (CV), rules-of-thumb (ROT) and plug-in (PI) (Gra-
macki, 2018). Cross-validation involves techniques like least squares cross-validation (LSCV), biased
cross-validation (BCV), and smoothed cross-validation (SCV). Rules-of-thumb includes approaches
such as Silverman’s rule of thumb and its improved version. Plug-in methods have been explored by
various authors, including Park and Marron (1990), Sheather and Jones (1991), and Hall et al. (1991),
among others. This article provides concise explanations of the following methods chosen for study:
least squares cross-validation, the improved version of Silverman’s rule of thumb, and Sheather and
Jones plug-in bandwidth.

3.1. Least squares cross validation

A well-known method for selecting the bandwidth is least squares cross-validation (LSCV), proposed
by Rudemo (1982) and Bowman (1984). The main objective is to find the optimal bandwidth h that
minimizes the ISE using the estimator f̂ (x; h) for density f (x). The integrated squared error of f̂ (x; h)
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is represented as

ISE f̂ (x; h) =

∫ [
f̂ (x; h) − f (x)

]2
dx

=

∫
f̂ (x; h)2 dx − 2

∫
f̂ (x; h) f (x) dx +

∫
f (x)2 dx. (3.1)

(Silverman, 1986; Wand and Jones, 1995).
The first term

∫
f̂ (x; h)2 dx of (3.1) can be calculated from the data which was proved by Härdle

(1991) as ∫
f̂ (x; h)2 dx =

1
n2h

n∑
i=1

n∑
j=1

K ∗ K
(

X j − Xi

h

)
, (3.2)

where K ∗ K (x) is the convolution of K (x).
The second term

∫
f̂ (x; h) f (x) dx of (3.1), which depends on h and involves the unknown density

f (x), has to be estimated. Notice that,
∫

f̂ (x; h) f (x) dx is the expected value of f̂ (x; h) which can
be estimated by

E
[
f̂ (x; h)

]
=

1
n

n∑
i=1

f̂−i (Xi; h) , (3.3)

where f̂−i (Xi; h) = (1/((n − 1)h))
∑n

j,i K((x − X j)/h) is the estimator based on the sample with Xi

deleted.
Finally, the last term

∫
f (x)2 dx of (3.1) is independent of the bandwidth h. Therefore, the last

term can be moved to the left side of the equation and can be written as

ISE f̂ (x; h) −
∫

f (x)2 dx =

∫
f̂ (x; h)2 dx − 2

∫
f̂ (x; h) f (x) dx. (3.4)

As a result, Equations (3.2) and (3.3) are inserted into the Equation (3.4), leading to the least
squares cross-validation function as

LSCV (h) =
1

n2h

n∑
i=1

n∑
j=1

K ∗ K
(

X j − Xi

h

)
−

2
n (n − 1) h

n∑
i=1

n∑
j,i

K
(

Xi − X j

h

)
(3.5)

(Härdle et al., 2004). The bandwidth that minimizes the function LSCV (h) is denoted by hLSCV.

3.2. Rules of thumb

The optimal bandwidth minimizes AMISE f̂ (x; h) with respect to h, and solving the first partial
derivative with respect to h yields

hAMISE =

 k0

k2
2θ2n

 1
5

, (3.6)

where θ2 =
∫

( f ′′ (x))2 dx, k0 =
∫

(K (x))2 dx and k2 =
∫

x2K (x) dx.
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The rule-of-thumb bandwidth is determined by replacing the density function f (x) with the nor-
mal distribution having zero mean and variance σ2 and using the Gaussian kernel function in Equation
(3.6). The rule-of-thumb bandwidth, denoted by hROT1, is calculated using the formula

hROT1 = 1.06σn−
1
5 . (3.7)

The rule-of-thumb bandwidth is sensitive to outliers, which cause an overestimation of σ and lead
to a larger bandwidth. To make the estimator more robust, the interquartile range (IQR) is used. The
improved version of the rule-of-thumb bandwidth, denoted as hROT2, is defined as

hROT2 = 1.06n−
1
5 min

(
σ,

IQR
1.34

)
(3.8)

(Härdle et al., 2004).

3.3. Plug-in

The concept of plug-in bandwidth was originally introduced by Woodroofe (1970). This concept
is based on the idea of using an optimal bandwidth that minimizes AMISE( f̂ (x; hSCBS)). Plug-in
bandwidth is based on the substitution of the unknown quantity θ2 =

∫
( f ′′ (x))2 dx. Sheather and

Jones (1991) also proposed the plug-in bandwidth, denoted as hSJDP. They provided a solution for this
bandwidth selection method as

hSJDP =

 k0

k2
2ψ̂4 (γ (h)) n

 1
5

. (3.9)

The pilot bandwidth for the estimation of ψ4 is a function γ of h. The choice of γ is defined by

γ (h) =

(
2K(4) (0) k2

k0

) 1
7
(
−
ψ̂4 (g1)
ψ̂6 (g2)

) 1
7

h
5
7 , (3.10)

where ψ̂4 (g1) and ψ̂6 (g2) are kernel estimates of ψ4 and ψ6. The choice of g1 and g2 are formulated
by

g1 =

(
−2K(4) (0)
ψ̂6k2n

) 1
7

and g2 =

(
−2K(6) (0)
ψ̂8k2n

) 1
9

, (3.11)

where ψ̂6 = −15/(16
√
πσ̂7), ψ̂8 = 105/(32

√
πσ̂9), K(4) (0) = 3/

√
2π and K(6) (0) = −15/

√
2π

(Wand and Jones, 1995).

4. The shifted Chebyshev series based plug-in bandwidth

Bandwidth selection in KDE using the AMISE criteria involves estimating the second-order deriva-
tive of the unknown density being estimated. The first kind shifted Chebyshev series expansion can
be used as an approximation method for an unknown density function. This section will cover the
necessary background on the first kind shifted Chebyshev polynomials and derive the bandwidth.
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4.1. The shifted Chebyshev polynomials

The first kind Chebyshev polynomials of degree m, where m ∈ {0, 1, 2, . . .}, are denoted as Tm (x) and
defined on the interval [−1, 1] . A more general recurrence relation is

Tm+1 (x) = 2xTm (x) − Tm−1 (x) with T0 (x) = 1 and T1 (x) = x. (4.1)

In order to use the first kind Chebyshev polynomials on a finite range [a, b], a transformation can be
applied to generate the so-called the first kind shifted Chebyshev polynomials. This transformation
involves using the equation

y =

(
b − a

2

)
x +

(
b + a

2

)
, then x =

(
2

b − a

)
y +

(
b + a
b − a

)
. (4.2)

Afterward, the first kind shifted Chebyshev polynomials are generated by

T ∗m (x) = Tm

(
2

b − a
y −

b + a
b − a

)
, for x ∈ [a, b] . (4.3)

In the context of the interval [a, b], the approximating function can be approximated using the first
kind shifted Chebyshev series as

f (y) =

m−1∑
i=0

ciT ∗i (y) , (4.4)

where the coefficients are defined via the formula

ci =
2
m

m∑
i=0

f
(

b − a
2

x̃k +
b + a

2

)
Ti (x̃k) , (4.5)

where

x̃k = cos
(

2k − 1
2m

)
π, k = 0, 1, . . . ,m − 1 (4.6)

is the Chebyshev zero nodes.
The integration of the squared function of the second-order derivative of the first kind shifted

Chebyshev series expansion θ2 =
∫

( f ′′ (y))2 dy can be expressed as

θ2,m =

∫ (
f ′′ (y)

)2 dy

=
4

m2

∫ m−3∑
i=0

 m∑
i=1

f
(

b − a
2

x̃k +
b + a

2

)
Ti (x̃k)

 T ∗i
′′ (x)


2

dy. (4.7)

By substituting the values of θ2 from (4.7) into the expressions for the optimal bandwidth derived
in (3.6), the resulting bandwidth can be described as the first kind shifted Chebyshev series-based
bandwidth:

hSCBS =

 k0

k2
2θ2,mn

 1
5

. (4.8)
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(a) Density #4 (n = 50)
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(b) Density #6 (n = 50)
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(c) Density #12 (n = 25)
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(d) Density #12 (n = 200)

Figure 1: Boxplot of MISE ( f̂ (x; hSCBS)) with the number of term m.

4.2. The optimal value of m

The bandwidth hSCBS is influenced by the number of terms m in the first kind shifted Chebyshev ex-
pansion used in estimating θ2,m. The performance and smoothness of this expansion are also affected
by m, acting as a smoothing parameter and representing the number of terms in the series expan-
sion. The best choice for the number of terms is the smallest m that results in the lowest ISE. Then,
the error in function expansion using the first kind shifted Chebyshev expansion is determined by
MISE ( f̂ (x; hSCBS)) = E

∫
[ f̂ (x; hSCBS) − f (x)]2dx.

5. Simulation study

In this section, the aim is to evaluate the performance of the proposed bandwidth hSCBS and compare
with three other bandwidths used for density estimation: least squares cross-validation bandwidth
(hLSCV), the improved version of the rules of thumb bandwidth (hROT2), and the Sheather and Jones
plug-in bandwidth (hSJDP). This study compares different bandwidths for density estimation using
fifteen normal mixture densities constructed by Marron and Wand (1992). These densities include
various shapes, such as unimodal, bimodal, trimodal, and multimodal, each defined and visualized in
Marron and Wand’s work. For each distribution, sample sizes of n = 25, 50, 100, 150, and 200 are
considered, and the MISE of the estimator is computed over 500 replications. The Gaussian kernel
function is used in all cases.

The main idea is to find the optimal number of terms in the expansion (m) that allows a good
approximation of f (x) using the first kind shifted Chebyshev series expansion, in the sense of the
mean integrated squared error (MISE). The results have been presented through box plots showing
the estimated MISE as a function of the number of terms in the expansion, as shown in Figure 1. This
graph illustrates the influence of the terms m on MISE across three density distributions (#4, #6, and
#12). The x-axis labels represent the sequential terms in the expansion, and the medians of MISE are
displayed in the box plots. Furthermore, a solid circle is used to indicate the optimal number of terms
in the expansion, which corresponds to the smallest MISE. Figure 1(a) displays the MISE of Density
#4 with sample size of n = 50, while Figure 1(b) shows the MISE of Density #6 with sample size n =
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Table 1: MISE ( f̂ (x; hSCBS)) × 10−3 bases on the bandwidths hLSCV, hROT2, hSJDP and hSCBS with 500 replications
for each case

n hLSCV hROT2 hSJDP hSCBS n hLSCV hROT2 hSJDP hSCBS

D
en

si
ty

#1

25 10.7819 4.8937 7.7200 2.9581

D
en

si
ty

#9

25 10.4642 4.1865 5.6758 4.2808
50 4.4220 2.7017 3.7667 2.0824 50 4.2284 2.9857 3.1319 2.8806
100 2.5376 1.5025 1.8990 1.2831 100 2.6069 2.1917 2.0087 1.8892
150 1.8510 1.1071 1.3038 0.9956 150 1.8859 1.8096 1.5154 1.4570
200 1.2925 0.9060 1.0161 0.8406 200 1.5083 1.5946 1.2736 1.2083

D
en

si
ty

#2

25 15.8366 9.6809 14.2788 6.8853

D
en

si
ty

#1
0 25 36.8391 23.5191 26.6129 22.3816

50 8.0684 5.2273 6.4727 4.4258 50 26.1360 21.0004 21.4497 20.6412
100 4.3664 2.9407 3.3472 2.6654 100 19.5172 20.0515 19.5826 14.7539
150 3.2559 2.2902 2.5283 2.1106 150 14.3548 19.3202 18.6060 11.9755
200 2.7399 2.0048 2.1457 1.8822 200 10.8535 18.9143 17.9090 10.5816

D
en

si
ty

#3

25 129.2468 154.7279 90.0448 72.9098

D
en

si
ty

#1
1 25 8.0731 4.5490 6.4799 4.1913

50 62.6229 143.2790 64.9015 44.6778 50 4.9207 3.0088 3.4638 3.0759
100 36.2592 131.1196 46.5380 22.7486 100 2.7689 2.2636 2.2999 2.1852
150 24.5300 125.3598 35.7687 19.9659 150 2.2054 1.8821 1.8253 1.8198
200 19.9220 117.4577 30.3761 16.7587 200 1.8125 1.6684 1.5879 1.6174

D
en

si
ty

#4

25 219.2996 172.4827 136.0272 84.3708

D
en

si
ty

#1
2 25 16.7257 9.6699 12.1060 8.6525

50 89.2615 136.3549 74.9258 51.4540 50 10.4177 8.1942 8.6793 7.9743
100 39.6160 114.3767 41.9968 33.0942 100 7.8214 7.5209 7.3742 6.0648
150 27.6475 98.8623 28.8491 26.2868 150 6.0406 7.1254 6.6118 4.9554
200 22.6444 90.6911 23.0213 22.9113 200 4.8533 6.7446 5.9887 4.2651

D
en

si
ty

#5

25 827.9669 471.6216 753.9018 292.4579

D
en

si
ty

#1
3 25 10.6791 5.8031 7.6241 5.7830

50 366.6813 213.6145 276.7979 191.1883 50 6.4439 4.3061 4.7116 4.3038
100 197.7864 120.3047 143.0313 117.9369 100 4.0942 3.4850 3.3782 3.2327
150 139.2668 91.8233 103.4045 90.9849 150 3.3745 3.0413 2.8025 2.7256
200 110.0786 76.4904 84.0808 75.2508 200 3.0361 2.8499 2.6000 2.5457

D
en

si
ty

#6

25 7.9374 3.9941 6.1431 3.7115

D
en

si
ty

#1
4 25 32.0359 24.3535 15.4503 13.6719

50 4.6343 2.4640 3.0836 2.6055 50 15.4430 22.3324 11.9413 10.5232
100 2.3224 1.7155 1.7884 1.6465 100 10.0967 20.7340 9.5673 8.0145
150 1.7449 1.3714 1.3327 1.2983 150 7.9991 19.4951 8.1350 6.7710
200 1.4163 1.1692 1.1060 1.1312 200 6.4908 18.5153 7.1848 5.9495

D
en

si
ty

#7

25 16.2093 18.0853 8.5167 7.8264

D
en

si
ty

#1
5 25 20.8581 28.7160 19.9445 15.7466

50 8.0472 14.4206 4.7440 4.6070 50 14.3004 27.7959 12.0152 10.7535
100 3.8401 11.2955 2.8610 2.7684 100 10.2774 26.6659 8.6503 8.1826
150 2.9414 9.5903 2.1900 2.1349 150 8.5594 25.5584 7.5136 7.1010
200 2.3237 8.4671 1.7893 1.7445 200 7.1760 24.7048 6.7325 6.1503

D
en

si
ty

#8

25 12.2326 6.2189 8.5853 5.4875
50 6.9255 4.0860 4.6909 3.9579
100 3.5754 2.9847 2.7308 2.6340
150 2.6956 2.4547 2.1257 1.9760
200 2.2223 2.1839 1.7520 1.6741

50. Figure 1(c) and Figure 1(d) show MISE for Density #12 with two different sample sizes n = 25
and n = 200, respectively. The performance is influenced by the combination of density and sample
size, and specific combinations yield better results.

The simulation results evaluate the performance of the plug-in bandwidth by finding the bandwidth
that minimizes the mean integrated squared error, MISE ( f̂ (x; hSCBS)). Table 1 shows the MISE values
for different bandwidths, and the bold text value indicates the smallest MISE associated with the
bandwidths hLSCV, hROT2, hSJDP and hSCBS. Overall, the proposed bandwidth hSCBS demonstrates
good performance compared to the other bandwidths, except for Density #6 (n = 50) and #11 (n
= 50), where the improved version of rules of thumb bandwidth (hROT2) shows better performance.
The simulation results indicate that the suggested bandwidth is a good choice for various scenarios.
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Figure 2: Histogram and kernel density estimates for the “flywheels” dataset.

Table 2: MSE ( f̂ (x; hSCBS)) × 10−3 for kernel density estimates with varying bandwidths

Bandwidth MSE
hLSCV 1.9152
hROT2 2.0158
hSJDP 1.6829
hSCBS 1.6156

It provides excellent performance compared to all the other bandwidths under consideration, even
though the calculation is quite complex.

6. Real data analysis

In this section, kernel density estimation is applied to real datasets. The performance of the proposed
bandwidth hSCBS is verified against other bandwidths. All calculations are performed using the R
programming language.

A real dataset named “flywheels” from Anderson-Cook (1999) and comprising 60 observations on
flywheel imbalance angles, will be utilized. This analysis focuses on how different bandwidth choices
influence kernel density estimates and histograms, serving as methods to understand data distribution.
Figure 2 displays a histogram with 14 bins for this dataset. The density seems to exhibit asymmetric
bimodal behavior. The kernel density estimate, using different bandwidth options such as hLSCV,
hROT2, hSJDP and the proposed hSCBS, is also overlaid on Figure 2. Different bandwidth options will be
compared to find the best approach. The kernel density estimate using the suggested bandwidth hSCBS
fits well across the dataset, as confirmed in Table 2 by the lowest mean square error (MSE) value for
hSCBS.

7. Conclusion

When selecting bandwidth for kernel density estimation, the direct plug-in method is the common
initial approach, but there is room for enhancement. Estimating the bandwidth involves finding the
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integration of the squared function of the second-order derivative of the unknown density to be es-
timated. This article introduces a bandwidth selection technique by incorporating the estimation of
θ2,m =

∫
( f ′′ (x))2 dx through the first kind shifted Chebyshev polynomials as an approximation to the

function f (x).
The simulation studies revealed that the first kind shifted Chebyshev series-based plug-in band-

width (hSCBS) performs well among other bandwidths, such as least squares cross-validation band-
width, improved rule of thumb bandwidth, and Sheather and Jones plug-in bandwidth. When applying
kernel density estimation to estimate the density of the “flywheels” dataset, the results indicate that
the proposed bandwidth (hSCBS), with the lowest MSE, offers the best performance compared to other
bandwidth methods. Even though obtaining the proposed bandwidth might be complex, it is still a
favorable choice for practical application.
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