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Abstract

In this paper we propose a variance function estimation method based on kernel trick for replicated data
or data consisted of sample variances. Newton-Raphson method is used to obtain associated parameter vector.
Furthermore, the generalized approximate cross validation function is introduced to select the hyper-parameters
which affect the performance of the proposed variance function estimation method. Experimental results are then
presented which illustrate the performance of the proposed procedure.
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1. Introduction

It becomes an important issue in many fields modelling the volatility or the local variability, which
are usually expressed in terms of variance functions. Researches on estimation of variance function
can be found in Anderson and Lund (1997), Hall and Carroll (1989) and Liu et al. (2007) and most
of them are focused on heteroscedastic error problems. In this paper we propose a variance function
estimation method based on kernel trick (Vapnik, 1995) for the heteroscedastic regression problem
under the assumption that sample variances follow independently gamma distribution. The kernel
trick is a method for using a linear model to solve a nonlinear problem by mapping the input space
into a higher-dimensional feature space. This is done by using Mercer’s theorem (Mercer, 1909).
The estimators are obtained by minimizing the penalized log-likelihood function of sample variances.
Here sample variances are obtained from replicated data where errors are assumed to follow a normal
distribution. The proposed method enables to select appropriate hyper-parameters easily from the
generalized approximate cross validation(GACV) function, which is used to select hyperparameters
for the achievement of high generalization performance. The rest of this paper is organized as follows.
In Section 2 we propose a variance function estimation method using the principal idea of kernel
machine. In Section 3 we present the model selection method using GACV function. In Section 4 we
perform the numerical studies through examples. In Section 5 we give the conclusions.

2. Variance Function Estimation
Consider the heteroscedastic regression model with observations with (k + 1) replicates as follows,
Zij = Hi t €, j:1,...,k+1,i:l,...,n,

where y; isamean of z;;’s for j = 1,..., k+1, g; follows a normal distribution (0, e/ the x; € RY is
an input vector and f(X;) is an unknown nonlinear function. We denote the sample variance obtained
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from z;’s for j = 1,...,k + 1 by y; and assume that given data set consists of sample variances y;s
which are assumed to follow independently gamma distributions (k/2, 2¢/®) /k) fori = 1,...,n. Here
we define the variance function as v(x;) = Var(z;; | x;) = E(y;|x;) = ¢/*). The negative log-likelihood
of the given data can be expressed as(a constant term is omitted)

n

L) = - (e ™ + f(x). @

i=1

The nonlinear function f(x;) can be estimated by a linear model, f(x;) = w'¢(x;), conducted in a high
dimensional feature space. Here the feature. mapping function ¢(-) : R? — R maps the input space
to the higher dimensional feature space where the dimension dy is defined in an implicit way. Then
the estimate of parameter vector satisfying f(x;) = @'¢(x;} for i = 1,...,n is obtained by minimizing
the penalized negative log-likelihood,

I e A, 2
Lw) =~ Z; (e + @' g(x) + Sl 22
where A is a nonnegative regularization paraméfer which controls the trade-off between the goodness-
of-fit on the data and {jw{f?. It is known that ¢(x;)¢/(x;) = K(x;,x ;) which are obtained from the appli-
cation of Mercer’s conditions (Mercer, 1909). The representation theorem (Kimeldorf and Wahba,
1971) guarantees the minimizer of the penalized negative log-likelihood to be f(x;) = K for
some 7 X 1 vector @, where K; is the i row of the n x n kernel matrix K with elements K(x;, x )
i, j=1,...,n. Now the penalized negative log-likelihood (2.2) becomes

L(a) = % }r:‘ (y,ve_K‘“ + K,a) + ga’Ka. 2.3)

i=1

The penalized negative log-likelihood (2.3) can be reexpressed as
1 A
L) = - (y'e ™ + 1,Ka) + So'Ke, (24)
n 2

where e is the componentwise exponential function and 1,, is the n X 1 vector of ones. By minimizing
the penalized negative log-likelihood (2.4) we obtain the estimate of parameter vector a, but not in a
explicit form, which leads touse the NewtonsRaphson.method. Ateach iteration the parameter vector
«a is updated as follows,

" = q - H—iG, (25)

where G is the gradient vector and H is the Hessian matrix of (2.4). With the estimate of parameter
vector &, the predicted variance function given the input vector x, is obtained as follows,

Pxg) = &/ = Kol 2.6)
where K is the 1 X n row vector with elements K(Xg, X )J=1.,n

3. Model Selection

The functional structure of the estimation method of variance function is characterized by hyper-
parameters, the regularization parameter A and the kernel parameter. For the model selection of the
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estimation method of variance function, we define the leave-one-out cross validation(CV) function
(Xiang and Wahba, 1996) for a set of hyper-parameters 6, as follows,

Vo) =+ 3 (e 4+ futx). (3.1)

i=1

where fg(x,-) is the estimate of fy(x;) from full data and fg_i)(x,-) is the estimate of f; (x;) from data

without i observation. Since for each candidate of hyperparameter sets, n of fo(_i)(xi)’s should be
computed, selecting parameters using CV function is computationally formidable. Using Xiang and
Wahba (1996) and Liu er al. (2007) we have the approximate cross validation(ACV) function as
follows, .

siig—fe(xi)yi (yi _ efﬁ(xi))

ln
ACV(6) = L(O) + — - , 32
@) (>+n; e (3.2)

where L(6) = 1/n Y, (vie” ) 4 fy(xy)), s is the i diagonal element of S, S = (W + AD)™'V with

W = K x diag{y;e” fotx) } and V = K x diag{e ot }. Replacing s,,ef@()") by their average hg, we have
the generalized approximate cross validation(GACV) function as follows,

1 .
GACV(9) = L0 — i fﬂ(x) —zfe(xr). 33
®) = L) + n( he)Zy (33)

4. Numerical Studies

We illustrate the performance of the variance estimation method based on the kernel method through
two simulated data sets and one real data set from Wei et al. (2006).

Ezample 1. For the first simulated example, 200 (x;,y;)'s dare generated to present the estimation
performance of the proposed method such that y; = 1/2¢/™€?, f(x;) = 2sinQ2nx;), x; = /200,
i=1,...,200, where eiz is generated from a chi-square distribution with 2 degrees of freedom. The
Gaussian kernel function is utilized in this example, which is

_ er\ﬂlz
K, x) =€ 2

From GACV function (3.3) (1, 0?) is obtained as (1,0.15). Figure 1(Left) shows true variance
function(solid line) and estimated variance functions imposed on the scatter plots of 200 data points
of y's, where the dashed and dotted lines represent the proposed method and smoothing spline method
(Green and Silverman, 1994) with 6 degrees of freedom, respectively. Figure 1(Right) shows values
of cross validation functions on various values of kernel parameter o> for fixed A = 1. In Figure
1(Right) CV function, ACV function and GACV function are depicted in solid line, dashed line, and
dotted line, respectively, from which we can see that ACV function and GACV function are good
approximates of CV function.

We repeated the above procedure 100 times to obtain 100 mean squared errors and their standard
errors of the proposed method and smoothing spline method with 6 degrees of freedom. The averages
of MSE’s and standard errors were obtained as (0.2556, 0.0183) and (0.5877, 0.0307), respectively,
which implies the proposed method provides a little bit better result than smoothing spline method in
this example.
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Figure 1: Variance functions(Left), CV function, ACV function and GACYV function(Right) for one of 100 data
sets.

Ezample 2. For the second simulated example; 100 (x;,z;;)’s with 10 replicates are generated
such as z;; = €, { = 1,...,100, j = 1,...,10, where ¢; is generated from a normal distribution
N0, eIy, f(x;) = cos(xy; + x3), x1; = (i — 1)/99, x3; = 7(i — 1)/99. The Gaussian kernel function is
utilized in this example and from GACV function (3.3) (1, o2) is obtained as (1, 0.5). Figure 2(Right)
shows true variance function(solid line) and estimated variance functions imposed on the scatter plots
of 200 data points of sample variances, where the dashed and dotted lines represent the proposed
method and multivariate adaptive regression spline method (Friedman, 1991), respectively. In Figure
2 we can see that the estimated variances function by proposed method behave similarly as the true
variance functions do.

We repeated the above procedure 100 times to obtain 100 mean squared errors and their stan-
dard errors of the proposed method and multivariate adaptive regression spline method. The averages
of MSE’s and standard errors were obtained as (0.0246, 0.0018) and (0.0344, 0.0026), respectively,
which implies the proposed method provides a little bit better result than multivariate adaptive regres-
sion spline method in this example.

Example 3. From California Children Growth Data (Wei et al., 2006), observations with more than
2 replicates on each girl’s age are extracted. And from those, observations with 3 randomly chosen
replicates on each girl’s age are used for the study, (x;, z;;) for i = 1,...,641, j = 1,2,3. We utilize
the polynomial kernel function with degree 2, which is empirically found to provides better result than
Gaussian kernel function in this example,

K(xp, xp) = (1 + xkx;)z .
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Figure 2: Replicated data(Left), Sample variances and estimated variance functions(Right) for one of 100 data
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Figure 3: Replicated data(Left), Sample variances and estimated variance functions(Right).
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From GACV function (3.3) 1 is obtained as 4. In Figure 3(Right) estimated variance functions im-
posed on the scatter plots of data points of sample variances, where estimates by the proposed method
are depicted in solid line and estimates by smoothing spline (Green and Silverman, 1994) with 6
degrees of freedom are depicted in dashed line. In Figure 3 we can see that the estimated variance
function seems to represent well the behavior of variance of given data.

5. Conclusions

We dealt with estimating the variance function for the data set including observations with same
replicates on each covariate or data consisted of sample variances by the kernel trick and obtained
GACYV function for the proposed method. Through the examples we showed that the proposed method
derives the satisfying results. We also found that the proposed procedure has an advantage of an easy
model selection method such as GACV function. The variance function estimation for the data set
including observations with different replicates on each covariate will be the next study.
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