• Title/Summary/Keyword: Kernel Methods

Search Result 487, Processing Time 0.022 seconds

Nonparametic Kernel Regression model for Rating curve (수위-유량곡선을 위한 비매개 변수적 Kernel 회귀모형)

  • Moon, Young-Il;Cho, Sung-Jin;Chun, Si-Young
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1025-1033
    • /
    • 2003
  • In common with workers in hydrologic fields, scientists and engineers relate one variable to two or more other variables for purposes of predication, optimization, and control. Statistics methods have improved to establish such relationships. Regression, as it is called, is indeed the most commonly used statistics technique in hydrologic fields; relationship between the monitored variable stage and the corresponding discharges(rating curve). Regression methods expressed in the form of mathematical equations which has parameters, so called parametric methods. some times, the establishment of parameters is complicated and uncertain. Many non-parametric regression methods which have not parameters, have been proposed and studied. The most popular of these are kernel regression method. Kernel regression offer a way of estimation the regression function without the specification of a parametric model. This paper conducted comparisons of some bandwidth selection methods which are using the least squares and cross-validation.

Common Expression Extraction Using Kernel-Kernel pairs (커널-커널 쌍을 이용한 공통 논리식 산출)

  • Kwon, Oh-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3251-3257
    • /
    • 2011
  • This paper presents a new Boolean extraction technique for logic synthesis. This method extracts kernel-kernel pairs as well as cokernel-kernel pairs. The given logic expressions can be translated into Boolean divisors and quotients with kernel-kernel pairs. Next, kernel intersection method provides the common sub-expressions for several logic expressions. Experimental results show the improvement in literal count over previous other extraction methods.

The shifted Chebyshev series-based plug-in for bandwidth selection in kernel density estimation

  • Soratja Klaichim;Juthaphorn Sinsomboonthong;Thidaporn Supapakorn
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.337-347
    • /
    • 2024
  • Kernel density estimation is a prevalent technique employed for nonparametric density estimation, enabling direct estimation from the data itself. This estimation involves two crucial elements: selection of the kernel function and the determination of the appropriate bandwidth. The selection of the bandwidth plays an important role in kernel density estimation, which has been developed over the past decade. A range of methods is available for selecting the bandwidth, including the plug-in bandwidth. In this article, the proposed plug-in bandwidth is introduced, which leverages shifted Chebyshev series-based approximation to determine the optimal bandwidth. Through a simulation study, the performance of the suggested bandwidth is analyzed to reveal its favorable performance across a wide range of distributions and sample sizes compared to alternative bandwidths. The proposed bandwidth is also applied for kernel density estimation on real dataset. The outcomes obtained from the proposed bandwidth indicate a favorable selection. Hence, this article serves as motivation to explore additional plug-in bandwidths that rely on function approximations utilizing alternative series expansions.

Choice of the Kernel Function in Smoothing Moment Restrictions for Dependent Processes

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.137-141
    • /
    • 2009
  • We study on selecting the kernel weighting function in smoothing moment conditions for dependent processes. For hypothesis testing in Generalized Method of Moments or Generalized Empirical Likelihood context, we find that smoothing moment conditions by Bartlett kernel delivers smallest size distortions based on empirical Edgeworth expansions of the long-run variance estimator.

Analysis of Kernel Hardness of Korean Wheat Cultivars

  • Hong, Byung-Hee;Park, Chul-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • To investigate kernel hardness, a compression test which is widely used to measure the hardness of individual kernels as a physical testing method was made simultaneously with the measurement of friabilin (15KDa) which is strongly associated with kernel hardness and was recently developed as a biochemical marker for evaluating kernel hardness in 79 Korean wheat varieties and experimental lines. With the scattered diagram based on the principal component analysis from the parameters of the compression test, 79 Korean wheat varieties were classified into three groups based on the principal component analysis. Since conventional methods required large amount of flour samples for analysis of friabilin due to the relatively small amount of friabilin in wheat kernels, those methods had limitations for quality prediction in wheat breeding programs. An extraction of friabilin from the starch of a single kernel through cesium chloride gradient centrifugation was successful in this experiment. Among 79 Korean wheat varieties and experimental lines 50 lines (63.3%) exhibited a friabilin band and 29 lines (36.7%) did not show a friabilin band. In this study, lines that contained high maximum force and the lower ratio of minimum force to maximum force showed the absence of the friabilin band. Identification of friabilin, which is the product of a major gene, could be applied in the screening procedures of kernel hardness. The single kernel analysis system for friabilin was found to be an easy, simple and effective screening method for early generation materials in a wheat breeding program for quality improvement.

  • PDF

NEW INTERIOR POINT METHODS FOR SOLVING $P_*(\kappa)$ LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, You-Young;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.189-202
    • /
    • 2009
  • In this paper we propose new primal-dual interior point algorithms for $P_*(\kappa)$ linear complementarity problems based on a new class of kernel functions which contains the kernel function in [8] as a special case. We show that the iteration bounds are $O((1+2\kappa)n^{\frac{9}{14}}\;log\;\frac{n{\mu}^0}{\epsilon}$) for large-update and $O((1+2\kappa)\sqrt{n}log\frac{n{\mu}^0}{\epsilon}$) for small-update methods, respectively. This iteration complexity for large-update methods improves the iteration complexity with a factor $n^{\frac{5}{14}}$ when compared with the method based on the classical logarithmic kernel function. For small-update, the iteration complexity is the best known bound for such methods.

  • PDF

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

A Non-Kinetic Behavior Modeling for Pilots Using a Hybrid Sequence Kernel (혼합 시퀀스 커널을 이용한 조종사의 비동적 행위 모델링)

  • Choi, Yerim;Jeon, Sungwook;Jee, Cheolkyu;Park, Jonghun;Shin, Dongmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.773-785
    • /
    • 2014
  • For decades, modeling of pilots has been intensively studied due to its advantages in reducing costs for training and enhancing safety of pilots. In particular, research for modeling of pilots' non-kinetic behaviors which refer to the decisions made by pilots is beneficial as the expertise of pilots can be inherent in the models. With the recent growth in the amount of combat logs accumulated, employing statistical learning methods for the modeling becomes possible. However, the combat logs consist of heterogeneous data that are not only continuous or discrete but also sequence independent or dependent, making it difficult to directly applying the learning methods without modifications. Therefore, in this paper, we present a kernel function named hybrid sequence kernel which addresses the problem by using multiple kernel learning methods. Based on the empirical experiments by using combat logs obtained from a simulator, the proposed kernel showed satisfactory results.

A Note on Deconvolution Estimators when Measurement Errors are Normal

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.517-526
    • /
    • 2012
  • In this paper a support vector method is proposed for use when the sample observations are contaminated by a normally distributed measurement error. The performance of deconvolution density estimators based on the support vector method is explored and compared with kernel density estimators by means of a simulation study. An interesting result was that for the estimation of kurtotic density, the support vector deconvolution estimator with a Gaussian kernel showed a better performance than the classical deconvolution kernel estimator.

Arrow Diagrams for Kernel Principal Component Analysis

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.175-184
    • /
    • 2013
  • Kernel principal component analysis(PCA) maps observations in nonlinear feature space to a reduced dimensional plane of principal components. We do not need to specify the feature space explicitly because the procedure uses the kernel trick. In this paper, we propose a graphical scheme to represent variables in the kernel principal component analysis. In addition, we propose an index for individual variables to measure the importance in the principal component plane.