References
- Aronszajn, N. (1950). Theory of reproducing kernels, Transactions of the American Mathematical Society, 68, 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
- Bochner, S. (1959). Lectures on Fourier Integral, Princeton University Press, Princeton, New Jersey.
- Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvoluting a density, Journal of the American Statistical Association, 83, 1184-1886. https://doi.org/10.1080/01621459.1988.10478718
- Delaigle, A. and Gijbels, I. (2007). Frequent problems in calculating integrals and optimizing objective functions: A case study in density estimation, Statistics and Computing, 17, 349-355. https://doi.org/10.1007/s11222-007-9024-0
- Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problem, Annals of Statistics, 19, 1257-1272. https://doi.org/10.1214/aos/1176348248
- Fan, J. (1992). Deconvolution with supersmooth distribution, The Canadian Journal of Statistics, 20, 159-169.
- Gunn, S. R. (1998). Support Vector Machines for Classification and Regression, Technical report, University of Southampton.
- Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolution problems, Biometrika, 92, 135-148. https://doi.org/10.1093/biomet/92.1.135
- Hazelton, M. L. and Turlach, B. A. (2009). Nonparametric density deconvolution by weighted kernel estimators, Statistics and Computing, 19, 217-228. https://doi.org/10.1007/s11222-008-9086-7
- Lee, S. (2010). A support vector method for the deconvolution problem, Communications of the Korean Statistical Society, 17, 451-457. https://doi.org/10.5351/CKSS.2010.17.3.451
- Lee, S. and Taylor, R. L. (2008). A note on support vector density estimation for the deconvolution problem, Communications in Statistics: Theory and Methods, 37, 328-336. https://doi.org/10.1080/03610920701653086
- Liu, M. C. and Taylor, R. L. (1989). A Consistent nonparametric density estimator for the deconvolution problem, The Canadian Journal of Statistics, 17, 427-438. https://doi.org/10.2307/3315482
- Mendelsohn, J. and Rice, R. (1982), Deconvolution of microfluorometric histograms with B splines, Journal of the American Statistical Association, 77, 748-753.
- Mukherjee, S. and Vapnik, V. (1999). Support Vector Method for Multivariate Density Estimation, Technical Report A.I. Memo no. 1653, MIT AI Lab.
- Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolutoin, Annals of Statistics, 27, 2033-2053. https://doi.org/10.1214/aos/1017939249
- Phillips, D. L. (1962). A technique for the numerical solution of integral equations of the first kind, Journal of the Association for Computing Machinery, 9, 84-97. https://doi.org/10.1145/321105.321114
- Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators, Statistics, 21, 169-184. https://doi.org/10.1080/02331889008802238
- Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer Verlag, New York.
- Vapnik, V. and Chervonenkis, A. (1964). A note on one class of perceptrons, Automation and Remote Control, 25, 103-109.
- Vapnik, V. and Lerner, L. (1963). Pattern Recognition using generalized portrait method, Automation and Remote Control, 24.
- Vert, R. and Vert, J. (2006). Consistency and convergence rates of one-class svms and related algorithms, Journal of Machine Learning Research, 7, 817-854.
- Wand, M. P. (1998). Finite sample performance of deconvolving density estimators, Statistics and Probability Letters, 37, 131-139. https://doi.org/10.1016/S0167-7152(97)00110-7
- Weston, J., Gammerman, A., Stitson, M., Vapnik, V., Vovk, V. and Watkins, C. (1999). Support vector density estimation. In Scholkopf, B. and Smola, A., editors, Advances in Kernel Methods-Suppot Vector Learning, 293-306, MIT Press, Cambridge, MA.
- Zhang, H. P. (1992). On deconvolution using time of flight information in positron emission tomography, Statistica Sinica, 2, 553-575.
Cited by
- A note on nonparametric density deconvolution by weighted kernel estimators vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.951
- A note on SVM estimators in RKHS for the deconvolution problem vol.23, pp.1, 2016, https://doi.org/10.5351/CSAM.2016.23.1.071