• Title/Summary/Keyword: reproducing kernel Hilbert space(RKHS)

Search Result 5, Processing Time 0.014 seconds

A Note on Support Vector Density Estimation with Wavelets

  • Lee, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.411-418
    • /
    • 2005
  • We review support vector and wavelet density estimation. The relationship between support vector and wavelet density estimation in reproducing kernel Hilbert space (RKHS) is investigated in order to use wavelets as a variety of support vector kernels in support vector density estimation.

  • PDF

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

A Support Vector Method for the Deconvolution Problem

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.451-457
    • /
    • 2010
  • This paper considers the problem of nonparametric deconvolution density estimation when sample observa-tions are contaminated by double exponentially distributed errors. Three different deconvolution density estima-tors are introduced: a weighted kernel density estimator, a kernel density estimator based on the support vector regression method in a RKHS, and a classical kernel density estimator. The performance of these deconvolution density estimators is compared by means of a simulation study.

A Note on Deconvolution Estimators when Measurement Errors are Normal

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.517-526
    • /
    • 2012
  • In this paper a support vector method is proposed for use when the sample observations are contaminated by a normally distributed measurement error. The performance of deconvolution density estimators based on the support vector method is explored and compared with kernel density estimators by means of a simulation study. An interesting result was that for the estimation of kurtotic density, the support vector deconvolution estimator with a Gaussian kernel showed a better performance than the classical deconvolution kernel estimator.