Divide-and-Conquer방법은 병렬 곱셈기의 구성에 잘 적용되며 가장 대표적으로 카라슈바 방법이 있다. Leone은 최적 반복 회수를 카라슈바 알고리즘에 적용하였으며 Ernst는 다중 분할 카라슈바 방법을 제안하였다. 본 논문에서는 카라슈바 알고리즘에서 불필요한 연산이 제거된 불필요한 연산이 없는 카라슈바 알고리즘과 효율적인 하드웨어 구조를 제안한다. 본 논문에서 제안하는 알고리즘은 기존의 카라슈바 알고리즘에 비교하여 같은 시간 복잡도를 가지나 공간 복잡도를 효율적으로 감소시킨다. 특히 확장체의 차수 n이 홀수 및 소수일 때 더 효율적이며 최대 43%까지 공간 복잡도를 줄일 수 있다.
유한체 $GF(2^n)$에서 두 원소의 곱셈을 수행하는 공간 복잡도가 낮은 병렬 처리 곱셈기의 구현에 있어서 divide-and-conquer 방법은 유용하게 사용된다. 이를 이용한 가장 널리 알려진 알고리듬으로는 카라슈바 (Karatsuba-Ofman) 알고리듬과 다중 분할 카라슈바(Multi-Segment Karatsuba) 알고리듬이 있다. Leo ne은 카라슈바 알고리듬의 최적화된 반복 횟수를 제안하였고, Ernst는 다중 분할 카라슈바 방법을 이용한 일반적이고 확장 가능한 유한체 곱셈기를 제안하였다. 본 논문에서는 Ernst가 제시한 다중 분할 카라슈바 병렬 처리 곱셈기의 복잡도를 제시한다. 또한 기존 방법의 병렬 처리 곱셈기와 시간 복잡도는 같지만 공간 복잡도는 낮은 새로운 다중 분할 카라슈바 방법의 병렬 처리 곱셈기를 제안하며 그에 따른 최적화된 반복 횟수를 제안한다. 나아가서 제안하는 곱셈기가 몇몇 유한체에서 카라슈바 방법의 병렬 처리 곱셈기 보다 공간 복잡도에서 효과적임을 제시한다.
Elliptic Curve Cryptography (ECC) coprocessors support massive scalar multiplications of a point. We research the design for multi-segment multipliers in fixed-size ECC coprocessors using the multi-segment Karatsuba algorithm on GF($2^m$). ECC coprocessors of the proposed multiplier is verified on the SoC-design verification kit which embeds ALTERA EXCALIBUR FPGAs. As a result of our experiment, the multi-segment Karatsuba multiplier, which has more efficient performance about twice times than the traditional multi-segment multiplier, can be implemented as adding few H/W resources. Therefore the multi-segment Karatsuba multiplier which satisfies performance for the cryptographic algorithm, is adequate for a low cost embedded system, and is implemented in the minimum area.
유한체 $GF(2^n)$ 연산을 바탕으로 구성되는 암호시스템의 효율적 구현을 위하여 유한체의 곱셈의 하드웨어 구현은 중요한 연구 대상이다. 공간 복잡도가 낮은 병렬 처리 유한체 곱셈기를 구성하기 위하여 Divide-and-Conquer와 같은 방식이 유용하게 사용된다. 대표적으로 Karatsuba와 Ofman이 제안한 카라슈바(Karatsuba-Ofman) 알고리즘과 다중 분할 카라슈바(Multi-Segment Karatsuba) 방법이 있다. Leone은 카라슈바 방법을 이용하여 공간 복잡도 효율적인 병렬 곱셈기를 제안하였고 Ernst는 다중 분할 카라슈바 방법의 곱셈기를 제안하였다. [2]에서 제안한 방법을 개선하여 [1]에서 낮은 공간 복잡도를 필요로 하는 $MSK_5$ 방법과 $MSK_7$ 방법을 제안하였으며, [3]에서 곱셈 방법을 혼합하여 곱셈을 수행하는 방법을 제안하였다. 본 논문에서는 [3]에서 제안한 혼합 방법에 [1]에서 제안한 $MSK_5$ 방법을 추가로 혼합하는 혼합 방법을 제안한다. 제안하는 혼합방법을 적용하여 곱셈을 구성하면 l>0, $25{\cdot}2^l-2^l을 만족하는 차수에서 [3]에서 제안한 혼합 방법보다 $116{\cdot}3^l$만큼의 게이트와 $2T_X$ 만큼의 시간 지연이 감소한다.
큰 -자리수의 2개 10진수에 대한 곱셈을 보다 빠르게 수행하는 방법은 존재하는가? 이 문제는 수학과 컴퓨터공학 분야에서 미해결 문제로 남아 있다. 이 문제에 대해 곱셈 횟수를 줄이는 연구로는 Karatsuba와 Toom-Kook 알고리즘이 있다. 본 논문은 곱셈 횟수를 줄이는 방법과는 완전히 별개로, 10진수 곱셈을 전적으로 덧셈만으로 효율적으로 수행하는 방법을 제안하였다. 제안된 방법은 2진수의 자리이동-덧셈법만으로도 RSA-100과 같이 컴퓨터로 수행이 불가한 매우 큰 자리수의 10진수 곱셈을 수행할 수 있음을 보였다. 제안된 방법은 수행 복잡도 (n) 의 덧셈으로 곱셈을 수행한다.
Elliptic curve cryptography is a relatively lightweight public-key cryptography method for key generation and digital signature verification. Some lightweight curves (eg, Curve25519 and Curve Ed448) have been adopted by upcoming Transport Layer Security 1.3 (TLS 1.3) to replace the standardized NIST curves. However, the efficient implementation of Curve Ed448 on Internet of Things (IoT) devices remains underexplored. This study is focused on the optimization of the Curve Ed448 implementation on low-end IoT processors (ie, 8-bit AVR and 16-bit MSP processors). In particular, the three-level and two-level subtractive Karatsuba algorithms are adopted for multi-precision multiplication on AVR and MSP processors, respectively, and two-level Karatsuba routines are employed for multi-precision squaring. For modular reduction and finite field inversion, fast reduction and Fermat-based inversion operations are used to mitigate side-channel vulnerabilities. The scalar multiplication operation using the Montgomery ladder algorithm requires only 103 and 73 M clock cycles on AVR and MSP processors.
NIST FIPS 186-2에 정의된 GF(p) 상의 5 가지 체 크기 (192, 224, 256, 384, 521 비트)와 8 가지의 산술연산 동작모드 (ECPSM, ECPA, ECPD, MA, MS, MM, MI, MD)를 지원하는 고성능 타원곡선 암호 프로세서 HP-ECCP를 설계하였다. HP-ECCP가 부채널 공격에 내성을 갖도록 만들기 위해, 타원곡선 점 스칼라 곱셈에 사용되는 개인키의 해밍웨이트에 무관하게 점 덧셈과 점 두배 연산이 균일하게 수행되는 수정된 left-to-right 이진 알고리듬을 적용하여 설계했다. 또한, 타원곡선 점 연산에 핵심이 되는 모듈러 곱셈 연산의 고성능 하드웨어 구현을 위해 Karatsuba-Ofman 곱셈 알고리듬, Lazy 축약 알고리듬, Nikhilam 나눗셈 알고리듬을 적용하여 설계했다. HP-ECCP를 180 nm CMOS 표준 셀 라이브러리로 합성한 결과 67 MHz의 동작 주파수에서 620,846 등가 게이트로 구현되었으며, 체 크기 256 비트의 ECPSM이 초당 2,200회 계산될 수 있는 것으로 평가되었다.
Vijayakumar, P.;Bose, S.;Kannan, A.;Jegatha Deborah, L.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권4호
/
pp.878-894
/
2013
Secure multimedia multicast applications involve group communications where group membership requires secured dynamic key generation and updating operations. Such operations usually consume high computation time and therefore designing a key distribution protocol with reduced computation time is necessary for multicast applications. In this paper, we propose a new key distribution protocol that focuses on two aspects. The first one aims at the reduction of computation complexity by performing lesser numbers of multiplication operations using a ternary-tree approach during key updating. Moreover, it aims to optimize the number of multiplication operations by using the existing Karatsuba divide and conquer approach for fast multiplication. The second aspect aims at reducing the amount of information communicated to the group members during the update operations in the key content. The proposed algorithm has been evaluated based on computation and communication complexity and a comparative performance analysis of various key distribution protocols is provided. Moreover, it has been observed that the proposed algorithm reduces the computation and communication time significantly.
타원곡선 상수배 연산은 사영좌표계를 기반으로 대부분 모듈러 곱셈으로 계산되므로 모듈러 곱셈의 효율성은 타원곡선암호의 성능에 크게 영향을 미친다. 본 논문에서는 FIPS 186-4의 224비트 소수체에서 효율적인 모듈러 곱셈 방법을 제안한다. 제안하는 방법은 Karatsuba 곱셈과 새로운 모듈러 감산을 수행한다. 제안하는 모듈러 곱셈은 기존방법에 비하여 25%정도 빠르며, 모듈러 감산만 비교하면 기존 방법보다 50% 연산으로 계산이 가능하다.
본 논문에서는 AVX2 환경에서 HQC 내 GF(2)[x] 곱셈 연산의 최적화 방안을 제안한다. HQC는 NIST PQC 공모전 round 4의 후보 알고리즘 중 하나로, 이진 코드 기반의 키 교환 알고리즘이다. GF(2)[x] 곱셈 연산은 HQC의 내부 연산 중 시간복잡도가 높은 연산 중 하나로, AVX2 환경에서 전체 클럭 사이클의 약 30%를 차지한다. GF(2)[x] 곱셈의 최적화를 위해 카라추바, 툼-쿡 알고리즘을 사용하였다. 두 알고리즘 모두 분할 정복 방식으로, 그 내부에서 더 작은 차수의 GF(2)[x] 곱셈 연산이 필요하다. 본 논문에서는 가장 효율적인 카라추바, 툼-쿡 알고리즘의 조합을 찾아 HQC 다항식 곱셈을 최적화하는 방법을 제안하고, 기존 구현물과의 성능을 비교한다. 비교 결과 hqc-128, -192, -256의 GF(2)[x] 곱셈에서 기존 대비 4.5%, 2.5%, 30.3%의 성능 향상을 보인다. 이를 키 생성, 캡슐화, 디캡슐화에 적용하였을 때, 기존 대비 hqc-128에서 각각 2.2%, 2.4%, 2.3%, hqc-192에서 각각 1.6%, 4.2%, 2.6%, hqc-256에서 각각 13.3%, 14.7%, 13.3%의 성능 향상을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.