
878 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

http://dx.doi.org/10.3837/tiis.2013.04.016

Computation and Communication Efficient
Key Distribution Protocol for Secure

Multicast Communication

P.Vijayakumar
1
, S.Bose

2
, A.Kannan

3
and L.Jegatha Deborah

1

1P.Vijayakumar, Department of Computer Science and Engineering, University College of Engineering

Tindivanam, Tindivanam, India-604 001. [e-mail: vijibond2000@gmail.com]
2S.Bose, Department of Computer Science and Engineering, Anna University Chennai, Chennai, India- 600 025.

[e-mail: sbs@cs.annauniv.edu.]
3A.Kannan, Department of Information Science and Technology, Anna University Chennai, India- 600 025.

[e-mail: kannan@annauniv.edu.]

*Corresponding author: P.Vijayakumar

Received December 1, 2012; revised February 21, 2013; accepted March 21, 2013; published April 30, 2013

Abstract

Secure multimedia multicast applications involve group communications where group

membership requires secured dynamic key generation and updating operations. Such

operations usually consume high computation time and therefore designing a key distribution

protocol with reduced computation time is necessary for multicast applications. In this paper,

we propose a new key distribution protocol that focuses on two aspects. The first one aims at

the reduction of computation complexity by performing lesser numbers of multiplication

operations using a ternary-tree approach during key updating. Moreover, it aims to optimize

the number of multiplication operations by using the existing Karatsuba divide and conquer

approach for fast multiplication. The second aspect aims at reducing the amount of

information communicated to the group members during the update operations in the key

content. The proposed algorithm has been evaluated based on computation and

communication complexity and a comparative performance analysis of various key

distribution protocols is provided. Moreover, it has been observed that the proposed

algorithm reduces the computation and communication time significantly.

Keywords: Multicast Communication, Key Distribution, One Way Hash Function,

Computation Complexity, Karatsuba Multiplication.

http://mrd.mail.yahoo.com/compose?To=sbs%40cs.annauniv.edu

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 879

Copyright ⓒ 2013 KSII

1. Introduction

Multimedia services such as pay-per-view, video conferences, sporting event, audio and

video broadcasting are based upon multicast group communication where multimedia

messages are sent to a group of members in a secured manner. In such a scenario, groups can

be classified into static and dynamic groups. In static groups, membership of the group is

predetermined and does not change during the communication. On the contrary, in dynamic

groups, membership can change during multicast communication. Therefore, in a dynamic

group communication members can join or depart from the services during any time

intervals. When a new member joins into the service, it is the responsibility of the Group

Centre (GC) to prevent new members from having access to the previous data and thus

providing backward secrecy in a secure multimedia communication. Similarly, when an

existing group member leaves from any group, he/she should not have further access to data

and this is called forward secrecy. In this model, the GC also takes care of the responsibility

of distributing the Secret key and Group key to the group members.

The first aspect of the algorithm proposed in this paper focuses on dynamic groups where

the group membership often changes and hence dynamic key generation and updating

operations are performed. In reality, such operations consume large computation time and

hence an effective key distribution protocol has to be designed in multimedia applications.

The larger computation complexity in such operations is achieved by using modular

exponentiation, GCD, ordinary multiplication and division operations in a binary tree, star

and cluster tree based key distribution schemes. To facilitate the reduction in computational

complexity, this paper proposes a new ternary tree key hierarchy which performs less

numbers of multiplication operations. Moreover, reducing the computation complexity can

also be performed by improving the speed of multiplication operations used in the key

updating operations. Since, optimizing the number of multiplication operations is a critical

performance improvement, this is also addressed by the proposed algorithm. The proposed

algorithm utilizes the existing Karatsuba based fast multiplication algorithm for effective

multiplication since it reduces the computation time compared to the existing algorithms.

In multimedia applications, the group communication is facilitated through group key

distributions and such keys have to be updated often for providing forward and backward

secrecy. Such group key interchange (GC and group members) must also reduce the

communication complexity. This communication complexity is normally estimated by the

number of data bits that are transmitted between the GC and the group members. The second

aspect of the proposed algorithm aims at reducing the communication complexity which is

facilitated in this work by using a specialized function described in section 3.3. The main

objective of this work is to reduce the computation complexity as well as the communication

complexity in the design of the new key distribution protocol. The computation complexity

has been reduced in this work through a ternary tree based key hierarchy which reduces the

number of multiplication operations and the optimization in multiplication operations is

achieved through the use of the existing Karatsuba fast multiplication technique. Moreover, a

specialized function is employed in this work in order to reduce the number of data bits that

are transferred between the GC and group members. Several advantages are provided by the

proposed algorithm. First, it reduces the computation complexity of the key distribution and

updating operations when compared with the existing approaches since it uses a ternary tree

based key hierarchy. Secondly, the number of multiplication operations used for key

880 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

updating is reduced when compared to other approaches since we use Karatsuba fast

multiplication technique. Finally, the proposed algorithm reduces the communication

complexity through the use of specialized functions. The remainder of the paper is organized

as follows: Section 2 provides a survey of related works. Section 3 discuses the proposed key

distribution protocol. Section 4 explains the Ternary tree based key management proposed in

this paper. Section 5 performs the comparative performance analysis of the proposed

algorithm with the other existing key distribution methods. Section 6 depicts the simulation

results. Section 7 gives the concluding remarks and suggests some future directions.

2. Related Work

There are many works on key management and key distribution that was present in the past

[1-3] [11] [17-21] [24-26]. In most of the existing key management schemes, different types

of group users obtain a new distributed multicast key which is used for encrypting the

multimedia data for every session update. Among the various works on key distribution,

Maximum Distance Separable (MDS) [5] method focuses on error control coding techniques

for distributing re-keying information. The main limitation of this scheme is that it increases

both computation and storage complexity. The Data Embedding Scheme proposed in [6] is

used to transmit rekeying message by embedding the rekeying information in multimedia

data. In that scheme, the computation complexity is O(log n). The storage complexity also

increases in the value of O(n) for the server machine and O(log n) for group members. One

of the limitations of this scheme is that a new key called embedding key has to be provided

to the group members in addition to the original keys, which causes lots of overhead. Level

homogeneous key tree [7] based key management scheme was proposed [8] to reduce

computation and storage complexity. Key management using key graphs [9] has been

proposed by Wong Gouda which consists of creation of secure group and key management

graphs scheme using Star based and Tree based method. The limitation of this approach is

the high computation cost of group center. A new group keying method that uses one-way

functions [10] to compute a tree of keys, called the One-way Function Tree (OFT) algorithm

has been proposed by David and Alan. In this method, the keys are computed up the tree,

from the leaves to the root. This approach reduces re-keying broadcasts to only about log n

keys. The major limitation of this approach is that it consumes more space. However, the

time complexity is more important than space complexity. The storage complexity of GC is

2nK and group member is LK, where K is the key size in bits. In our work, we focused on

reduction of computation and communication time complexity. ELK [23] uses key

derivations based on pseudo-random functions, and the authors also implement recovery

mechanisms in their algorithms. It is similar to OFT in the sense that intermediate keys are

generated from its children, but Pseudo-Random Functions (PRFs) are used rather than one-

way functions.

Wade Trappe and Jie Song proposed a Parametric One Way Function (POWF) [12] based

binary tree key Management. The storage complexity is given by () keys for a

group centre. The amount of storage needed by the individual user is given as
()

 Keys

where L is the number of levels of the tree. Computation time is represented in terms of

amount of multiplication required. The amount of multiplication needed to update the KEKs

using bottom up approach is . Multiplication needed to update the KEKs using top

down approach is
() ()

. This complexity can be reduced substantially if the

numbers of multiplications are reduced. Therefore, in this paper we propose a new Ternary

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 881

Copyright ⓒ 2013 KSII

tree based key Management Scheme that reduces computation time by reducing the number

of multiplications required in the existing approaches. We also use a karatsuba fast

multiplication algorithm to optimize the multiplication operations used in the key

distribution protocol. The proposed method also reduces the amount of information needed

to be communicated when there is a change in the group membership. Our proposed

algorithm is suitable for single join/leave operation (Single Rekeying operation). When

numbers of joining or leaving operations are more, batch joining and leaving operations can

be integrated into our proposed key distribution protocol.

3. Proposed Key Distribution Protocol

The proposed framework works in three phases. The first phase is the Group Center

initialization, where a multiplicative group is created. In the second phase called Member

Initial Join, the members send joining request to the group center and obtain all the necessary

keys for participation. The final phase namely the Member Leave phase deals with all the

operations to be performed after a member leaves from the group (providing forward

secrecy). The proposed framework mainly concentrates on the third phase of Member Leave

operation because the computation time is extremely large in providing forward secrecy and

is a great challenge in multimedia multicast applications.

3.1 GC Initialization

Initially, the GC selects a large prime number p. This value, p helps in defining a

multiplicative group
 and a secure one-way hash function H(.). The defined function, H(.)

is a hash function defined from where ‘x’ and ‘y’ are non-identity elements of
 .

Since the function H(.) is a one way hash function, ‘x’ is computationally difficult to

determine from the given function () and ‘y’.

3.2 Member Initial Join

Whenever a new user is authorized to join the multicast group for the first time, the user

sends a join request to GC. After receiving the joining request, GC verifies it, authenticates

the identity of the new user, and randomly generates a new individual secret key and

sends it (using a secure unicast) via secure channel which is known only to the user and

GC. is a random element in
 . Using this , the Sub Group Keys (SGK) or auxiliary

keys and a Group key are given for that user which will be kept in the user

database. In order to communicate the SGK and GK to the newly joined user, the group

centre encrypts the new SGK and GK using new user’s secret key and sends it as a unicast

message. Meanwhile, the GC encrypts the new SGK and GK using old SGK and GK and the

result is multicast to the already existing users.

3.3 Member Leave

Member Leave operation is completely different from member join operation. In member

leave operation, when a member leaves from the group, the GC must avoid the use of old

Group key/SGK to encrypt new Group key/SGK. Since old member, knows old GK/SGK, it

is necessary to use each user’s secret key to perform re-keying operation when a member

departs from the services. In the existing key management approaches, this process increases

GC’s computation time, because the number of multiplication operations to be done in the

key updating is more. Therefore, this work aims at reducing the computation time by

882 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

decreasing the number multiplication operations to be carried out. Moreover, this work

reduces the amount of information to be communicated to the group members to recover the

new GK. The following steps describe the key updating process which reduces computation

and communication time.

The GC executes the rekeying process in the following steps:

1. GC defines a one way hash function ()where is the i
th

users secret key

information, y is the users public key information and computes its value as shown in

equation (1).

 ()
 () (1)

2. GC computes the following function () for the user as shown in equation (2).

Next, it computes () for the user . Similarly, it computes this value for ‘n’

numbers of users to whom the message has to be sent.

 () ⌈
 ()

⌉ (2)

3. It defines a new function () which is obtained by adding () with the value

of ‘p’ as shown in equation (3).

 () () (3)

 The purpose of adding the value of ‘p’ with () is to allow each user to recover

the original keying information. This function has been introduced newly in this

proposed key distribution algorithm to reduce the computation and communication

time.

4. GC computes (encrypts) the new keying information () for the new group

key,
 which is generated at time ‘t’ and that has to be sent to the group

members as shown below:

 () () ∏ (())

 (4)

5. GC sends the newly encrypted key () value to the existing group members.

Upon receiving the encrypted information from the GC, an authorized user of the

current group executes the following steps to obtain the new group key.

a. Calculate the value ()
 () where is user’s secret key and ‘y’ is

the old group keying information which is known to all the existing users. If ‘y’ is a

random value selected from the group, it is sent as a broadcast message to the

existing group members.

b. Compute () ⌈
 ()

⌉

c. Add ‘p’ value with the function ().
d. A legitimate user can decode the rekeying information to get the new group key

 () by calculating the following value:

 () (()) (5)

Since (i) ()
 and () (),

 (ii) ∏ (())

 is divisible by ()

 () (())= ()

The proposed method adds the p value with () to reduce the computation and

communication time. The ‘+’ sign in equation (3) is the addition operation which plays a

vital role in reducing the computation time complexity. In the existing approaches [1][12]

concatenation operator was used to concatenate 1 or some other value in front of the

function (). This may increase the number of digits produced by the function ().

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 883

Copyright ⓒ 2013 KSII

Therefore, the computation time increases when performing the multiplication operation as

the number of digits produced by the function () increases. If the output produced by

the function is an ‘n’ digit number, in general, to multiply two ‘n’ digit numbers requires n
2

multiplications. Hence, the computation time can be reduced if the output produced by the

function () is reduced compared with the existing approaches. In order to optimize the

multiplication operation used in rekeying message as shown in equation (4), Karatsuba

Divide and conquer multiplication method is used as an optimization method in our proposed

key distribution protocol. The working of the optimization method is explained in the

following section.

3.4 Optimization Method

Assumption:

Let () be a multiplication function, where =secret key of a user, y= old group key.

Now, ‘ ’ is the size of the output digit produced from the function () for number of

users where i=1, 2, 3,..., n (n= size of the group).

Example:

Consider a scenario, where =2 and =2. A set of ‘ ’ are multiplied to form the

rekeying message as shown in equation (4) using traditional multiplication operation in most

of the existing key distribution approaches [4][12]. In order to multiply and using

traditional multiplication operation, the algorithm takes 4 numbers of multiplications. In

general, when two ‘ ’ digit numbers are to be multiplied, it takes () multiplication

operations in order to obtain the solution.

For optimizing the number of multiplication operations, Karatsuba fast multiplication

divide and conquer approach [13][14][15][16] is used in our proposed key distribution

algorithm. The number of multiplication operations to be performed in total to obtain the

solution for the ‘ ’ digit number will be (). If is a long digit number, it divides the

number in to tow halves and those products can be multiplied by recursive calls of the

Karatsuba divide and conquer algorithm. The recursion can be applied until the numbers are

so small that they can (or must) be computed directly. We can obtain the whole product used

in the function () by using “divide and conquer” method recursively. Hence, the

multiplication time complexity is given by () Therefore, it is faster than the classical

algorithm, which requires single-digit products and the complexity is () .

Karatsuba fast multiplication approach works well when the value of >16 digits. However,

if the number of digits of <16, this algorithm shall not show a significant difference. In

order to make the optimized use of karatsuba fast multiplication approach, the group size in

our proposed key distribution algorithm can have a 16-ditigt, 32-digit, 64-digit and 128-digit,

etc. In the proposed algorithm given in section 3.3, we have analyzed and tested the

algorithm for a multiplicative group size p as 16-digit, 32-digit and 64-digit prime numbers.

The key values used in our algorithm are of 16 and 32 digit numbers.

Theorem 1: The number of multiplication in group key computation is in the order of

 () when Karatsuba divide and conquer multiplication [2] is employed for key

computation where the key size is a digit number.

Proof: Initially, divide the input number in to three

 digit numbers each can take three

multiplications of

 digits, which is represented as

 . Break each of the resulting

884 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

numbers further into

 digit parts and perform the multiplications with these parts. Repeat

the same steps until single digits are obtained for the input numbers in the level .

Simplifying the above statements, the following formulations are obtained.

 =

 =

 (

)

 (

)

 (

)

 = (

 (

)

 (

)

 (

)

)

This series is in the form of finite geometric series and this can be

written as,

Substitute

 to simplify this equation.

 (
(

)

(

)

)= (
(

)

(

)

) = (

)

 ((

)

(

)

)= (

)

(

)

 = (

)

 (

) = (

)

 = = ()

Table 1. Computation Time measured for various key sizes

Prime

number

size (in

digits)

Private

key/GK

size (in

digits)

Number of

Multiplications

Existing Binary tree

approach Key

Computation Time (ns)

Optimized KKD Key

Computation Time(ns)

(Proposed)

16 8 2 1787059 1585798

16 8 3 2897065 2695804

16 16 2 1926072 1748828

16 16 3 3567098 3389854

32 16 2 2543346 2367102

32 16 2 4059594 3892350

32 32 2 4203738 4062044

32 32 3 8200456 8058762

Table 1 shows the computation time measured from the optimized key distribution

protocol that employs Karatsuba divide and conquer multiplication algorithm. From the table,

it is evident that the optimized key distribution algorithm takes less computation time for the

key distribution in comparison with the other algorithms given in the literature. The sizes of

the key values are taken as16 and 32 digits for the experimental analysis. However, from the

table it is also evident that when the key value is an 8-digit number the computation time is

close to the values of the traditional multiplication used in other existing algorithms. In

conclusion, the proposed optimized key distribution algorithm performs best when the keys

are of larger size (>16 digits).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 885

Copyright ⓒ 2013 KSII

4. Ternary Tree based Approach

Scalability can be provided by employing the proposed approach in a key tree based key

management scheme to update the GK and SGK. Fig. 1 shows a key tree in which, the root

is the group key, leaf nodes are individual keys, and the other nodes are auxiliary keys

(SGK). A key tree is a hierarchical arrangement of a set of keys where each node of a key

tree contains a key called as k-nodes. Auxiliary keys are assigned to internal k-nodes, and

users secret keys are placed in the leaf level k-nodes. Each leaf level k-node is associated

with a unique user node u-node, which represents a particular member in the group. An

individual member’s secret key is only shared by the server and the corresponding member,

and an auxiliary key is shared by members that belong to the subtree rooted at the k-node of

the auxiliary key. An individual user’s secret key is established at the time a member joins

the group, and it remains valid until the member leaves. On the other hand, auxiliary keys are

frequently updated and sent to members to keep multicast communication secrecy. For

Example, if a member from Fig. 1 leaves from the group, the keys on the path of his/her

leaf node to the tree’s root should be changed. Hence, only the keys and will

become invalid.

Therefore, these keys must be updated. In order to update the keys, two approaches

namely top-down and bottom-up are used in the members departure (Leave) operation. In the

top-down approach, keys are updated from root node to leaf node. On the contrary, in the

bottom-up approach, the keys are updated from leaf node to root node. When member
leaves from the group, GC will start to update the keys and using bottom-up

approach. In top-down approach, the keys are updated in the order and . The number

of multiplications required to perform the rekeying operation is high in top down approach

than bottom up approach. This is evident from the complexities shown in equation (6) and

(7). In the ternary tree based method, the number of multiplications needed to compute the

re-keying information using the bottom up approach is given by the relation,

 () (6)

where,

B= The number of multiplications needed in bottom up approach, = The number of

children (degree) for each node of the tree, = L=Level of the tree (0 …ν), and n =

number of registered users. Similarly, the number of multiplications needed for top down

approach in the ternary based method to compute the re-keying information can be given by

Fig. 1. Key Tree based Key management Scheme

886 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

the relation,

 () (7)

Table 2 summarizes the overall computation complexity of our proposed Karatsuba

multiplication based Key Distribution protocol named as KKD with most of the existing well

known key distribution protocols SKDC [9], OFT [10], ELK [23] and LKH [24]. The

notations used for comparisons are defined as: n is the number of members, k is size of the

key used in various algorithms, is the maximum number of children of each node of the

tree, p is the size of the prime number used to define the multiplicative group. The length of

a path of the key tree of LKH, OFT, ELK and SKDC is h, in particular, for binary key

trees, for -ary key trees, and =[] for balanced key trees.

E, D, ED, F, R, M, Ap, A denote the computation costs of encryption, decryption, erasure

decoding, key derivation, random key generation, modulo division, appending and addition

respectively. Erasure decoding operations for an MDS code needs () arithmetic

operations if standard erasure decoding algorithms are used. Even if the Fast decoding

algorithms [22] are used they need () operations in the receiver side. Similarly, the

time taken to perform a decryption, random key generation operation used in the receiver

side in SKDC, OFT, ELK and LKH is high compared with performing simple addition and

modulo division used in our KKD approach. Considering the computation costs of LKH,

OFT, ELK, MDS, Binary and SKDC our proposed approach KKD uses only a simple

addition and modulo division operations in the user side during the key updating process.

Therefore, the proposed KKD multicast key distribution takes less computation power in the

user side compared with some of the existing key distribution protocols. Moreover, for

optimizing the computation power of GC we have incorporated the existing karatsuba

multiplication when the key updating operation is used in the GC. This improves the group

center computation cost slightly compared with existing approaches.

4.1 Security Analysis

This work analyzes the proposed protocol for forward secrecy and backward secrecy. The

assumption of the implemented protocol is that an adversary might be a group member

sometime. Backward secrecy is the technique of preventing a new member from accessing

the communication sent before joining the group. In order to access the previous

communication, an adversary needs to make the previous group key. Moreover, if the

adversary becomes a group member, it may try to derive the previous group key which is not

permitted. In the proposed protocol, the newly updated group key is encrypted with an old

group key when it is communicated to old group members, an adversary needs to find the old

group key. For performing the encryption operation explained earlier, the traditional DES

encryption algorithm is used in the join procedure of the protocol. This property makes the

situation impossible for the adversary to compute the previous group key. Consequently, the

adversary cannot access the communication sent before join, which means the proposed

approach supports the initial security requirement.

Forward secrecy is the technique of preventing an old member from accessing current

communication after leave operation. When a member leaves the group, he/she may try to

derive the group or subgroup key. In the proposed protocol, it is impossible for an adversary

to compute the current group key after the leave for the same reasons that was explained for

the backward secrecy technique. Because when a member leaves from the group, GC

generates a polynomial using all the known keys of the existing users and adds the new

group key to this polynomial. The user can then divide this polynomial using his/her

personal keying information. Therefore, a user who had already left from the service cannot

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 887

Copyright ⓒ 2013 KSII

find the new group key since his/her personal keying information is not included in the

polynomial. However, it is to be noticed that even after a member is left from the service, the

departing member can try to find any one of the existing member’s secret in order to obtain

the newly communicated group key by guessing out all the keys of the multiplicative group

using brute force attack. In this case, if the size of is w bits, then the attacker has to use the

total number of trial of . The time taken to derive can be increased by choosing a

large for each user’s secret key. In this work, the size of must be 64bits and prior

experiments were conducted with 32 bits. If the time taken to perform a single attempt using

brute force attack is 1 , then the total time required will be = 292471

years. Consequently, an adversary cannot find the group key in order to access the current

communication, which means the second security requirement is supported in this protocol.

Table 2. Computation, Storage and Communication Complexities of Various Key Distribution

Schemes

5. Performance Evaluation

In this section, we study the performance of our proposed algorithms and compare them with

the Euler’s totient based Algorithm, MDS algorithm, secure group communication, one way

function tree, Binary tree based, Efficient large group key distribution, and Logical key

hierarchy Algorithm described in [1][5][9][10][12][23][24] which are labeled as ETF, MDS,

SKDC, OFT, Binary, ELK and LKH respectively. We consider two performance metrics

such as Computation Time and Communication Time. Computation Time is defined as the

time taken to compute the group key at the Group Center area and the Group Members’ area.

Communication Time is defined as the time taken to receive the keying material from the

Group Centers area. For comparing the computation time of the proposed algorithm with

seven different algorithms present in the literature, the key size is taken to be 8-digit, 16-digit

and 32-digit values. Table 3 and Table 4 shows the measured computation time in

 MDS Binary OFT ELK LKH
SKD

C

KKD

(Proposed)

Computation

Cost (GC)

 (
)

 (
)

 (
)

 (
)

(
)
(
)

 (
)

Computation

Cost(User)

(
)(
)

()(
)

 ()
 (
)

 ()
()(
)

Storage

Complexity

(user)
 () () ()

Storage

Complexity

(GC)

()

()

()

()

()

()

()

Communicat

ion

Complexity

() ()

(
)

(
)

(
)

(
)[(
)]

888 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

nanoseconds for such comparisons. It is evident from the values that the computation time

of our proposed algorithm is found to be better both in the server area and the client area

than the other algorithms. The proposed method adds p value with () instead of

appending a number in front of it to reduce the number of key information bits

communicated from GC to group members. The amount of information bits needs to be

communicated while updating the keys for our proposed approach and existing approach are

calculated and summarized in Table 5. Since this key management scheme uses a ternary

tree based key tree to store all the keys, the maximum number of multiplication operations

performed to update a single key is two at each level except the last but one level. Hence, if a

tree has maximum of N children under each node then N-1 multiplications are performed to

update a particular key of a key tree when a user join/leave from the multicast service. As the

amount of multiplications increase, the number of bits that are to be communicated in our

proposed approach is reduced gradually and hence it reduces the overall communication

delay.

Table 3. Server Group key Computation Time for various Key Distribution Approaches

From the experiments carried out in this work, it has been observed that when the group

consists of 243 users and if one user wants to leave from a ternary tree, then the number of

digits to be communicated for updating a single key from any level other than th level

using proposed approach is 47 digits, if the prime number p value is set as a 16 digit number

which is equal to 64bits. Similarly, for the same p value the number of digits to be

communicated becomes 49 digits in the existing approach and hence it increases 8-bits for

updating a single key. If the ternary tree has 5 levels (total number of users=243) then the

total number digits need to be communicated to update the group key using our proposed

approach is represented as 47+47+47+47+32=220digits. However, in the existing schemes

[1][12] the communication cost is computed as 49+49+49+49+33=229digits for a ternary

tree where =5. This gives us the overall reduction of 9 digits=36bits in our proposed

No. of

Multip
licatio

ns

Public

key/Old
GK

Private

Keys

Size of

the Prime
Number

(in digits)

New

GK
Size (in

digits)

Binary

(ns)

ETF(ns) MDS (ns) OFT (ns) ELK (ns) LHK

(ns)

SKDC

(ns)

KKD (ns)

(Propose
d)

2 65236

32067,

92038

8 5 753408 211948432 599231 609381 624495 613495 627495 552147

2 3405833 634090,
5609432

8 6 846185 74401457 760156 702347 717272 706272 720272 644924

2 99436 76420,

13042

16 5 876905 108734791 790874 745116 757992 746992 760992 685644

2 5325021 630229,

5329022

16 6 976493 8783870505

3

878956 843730 857580 846580 860580 785232

3 52354 34602,
65708,

34503

8 5 894126 66234234 832145 872947 886348 875348 889348 814000

3 7239530 2135082,
5592011,

9338043

8 6 1027245 66173260 965623 1006572 1019467 1008467 1022467 947119

3 21321 67702,

57524,

13456

16 5 1079355 134731825 945647 940672 950442 939442 953442 878094

3 4213531 4562404,

7429042,

3465632

16 6 1316729 1317281552 1162346 1178946 1187816 1176816 1190816 1115468

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 889

Copyright ⓒ 2013 KSII

approach. In general, if the degree of the multiplicative group
 used in our approach is p,

then the amount of keying information to be communicated for updating each intermediate

key (auxiliary key) is denoted as [(3×p)-1] except for the level where leaving/joining

operation takes place. So the communication cost takes to update all the keys from the leaf to

the root is given by,

 ()[()] () (8)

Where,

 = Communication Cost of existing key management approach,

 p = degree of the multiplicative group,

 = degree of the tree and n = Total number of users.

Table 4. Client Group Key Computation time for Various Key Distribution Approaches

 ()[()] (9)

Where,

 = Communication Cost of proposed key management approach,

 p = degree of the multiplicative group,

 n = Total number of users,

 = degree of the tree.

No. of

Multi

plicati
ons

Public

key/Old

GK

Private Keys Size of

the

Prime
Number

(in

digits)

New

GK

Size (in
digits)

Binary

(ns)

ETF(ns) MDS

(ns)

OFT

(ns)

ELK

(ns)

LHK

(ns)

SKDC

(ns)

KKD

(ns)

(Prop

osed)

2 65236 32067, 92038 8 5 520372 87477763 494678 335617 391617 348617 319111 314605

2 3405833 6340902, 5609432 8 6 588792 62202985 637209 404037 460037 417037 387531 383025

2 99436 76420, 13042 16 5 640457 87105870 569879 465702 521702 478702 449196 444690

2 5325021 6302293,5329022 16 6 433325 86853329641 397543 258570 314570 271570 242064 237558

3 52354 34602,65708,

34503

8 5 526888 58699556 578213 463268 519268 476268 446762 442256

3 7239530 2135082, 5592011,

9338043

8 6 450018 61553685 431432 386398 442398 399398 369892 365386

3 21321 67702, 57524,

13456

16 5 897951 154361288 744304 713196 769196 726196 696690 692184

3 4213531 4562404, 7429042,

3465632

16 6 987455 1244607297 913456 802700 858700 815700 786194 781688

890 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

Table. 5 Length of the Rekeying Messages for various Key Distribution Approaches

Table 6. Communication Delay for various Key Distribution approaches

Similarly, the analysis for the Communication Time is also done and the results are tabulated

in Table 6. From the result analysis, it is clear that the communication time taken by our

proposed algorithm is found better than the other algorithms.

No. of

Multiplic

ations

Public
key/Old GK

Private Keys

Length of

Prime
Number(in

digits)

Group Key
Size(in digits)

Binary

Tree (in

digits)

ETF

(in

digits)

MDS

(in

digits)

KKD (in

digits)

(Proposed)

2 65236 32067,92038 8 5 17 17 16 16

2 3405833 6340902,5609432 8 6 17 17 16 16

2 99436 76420,13042 16 5 33 31 32 32

2 5325021 6302293,5329022 16 6 33 31 32 32

3 52354 34602,65708,34503 8 5 25 25 24 24

3 7239530 2135082,5592011,9338043 8 6 25 25 24 24

3 21321 67702,57524,13456 16 5 49 48 48 47

3 4213531 4562404,7429042,3465632 16 6 49 49 48 47

No. of

Multi
plicati

ons

Public
key/old GK

Private Keys

Binary Tree
(ns)

ETF(ns) MDS (ns) ELK (ns) LHK (ns) SKDC (ns) OFT (ns)
KKD (ns)
(Proposed)

2 65236 32067,92038 1098458 868635 974632 671940 771940 1171940 506873 506773

2 3405833
6340902,56094
32

498030 375151 512546 437103 537103 937103 272036 172036

2 99436 76420,13042 640457 298495 640023 507243 607243 1007243 342176 343176

2 5325021
6302293,53290

22
433325 149545 423040 450312 550312 950312 285245 284245

3 52354
34602,65708,34

503
419834 296490 417653 349670 449670 849670 184603 183603

3 7239530
2135082,55920
11,9338043

350018 343275 326578 407737 507737 907737 242670 232670

3 21321
67702,57524,13

456
532463 510320 504567 608166 708166 1108166 443099 433099

3 4213531
4562404,74290
42,3465632

476145 496499 464343 406979 506979 906979 241912 141912

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 891

Copyright ⓒ 2013 KSII

6. Simulation Results

The proposed method has been simulated in Java (in a P4 machine with 2GB RAM) for

more than 6000 users and we have analyzed the computation time with existing approaches

to perform the rekeying operation.

Fig. 2. GC Key Computation Time of various Key Distribution schemes

Fig. 3. User Key Computation for getting the new key value

 Fig. 4. Communication Delay of various Key Distribution schemes

892 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

The graphical results shown in Fig. 2 are used to compare the GC key computation time of

the proposed method with the existing methods. It compares the results obtained from our

proposed KKD with MDS, SKDC, OFT, Binary, ELK and LKH. From Fig. 2, it is observed

that when the group size is 6561, the key computation time is found to be 6181.152µs in our

proposed approach for updating all the keys from the leaf node to the root node where the

key size=16 digits, which is better in comparison with the other existing schemes. Moreover,

if the number of members who are joining and leaving increases the computation time

proportionately increases. However, it is less in comparison with the existing approaches.

The results shown in Fig. 3 are used to compare the user’s key computation time of our

proposed method with the existing methods.

It compares the results obtained from the KKD scheme with existing approaches and it is

observed that when the group size is 6561, the key recovery time of a user found to be

2405.432µs in our proposed approach, which is better in comparison with the other existing

schemes. The results illustrated in Fig. 4 shows the communication time taken to receive all

the rekeying information from leaf nodes to the root node in order to update the group key.

Our proposed approach (KKD) shows a reduced communication delay when compared to

other algorithms, which is approximately 1476.824µs.

7. Conclusion

In this paper, new algorithms have been proposed to tackle challenges exist in secure

multimedia multicast. Therefore, a new ternary tree-based key distribution protocol (key

value = ‘n’ bit numbers) has been proposed to provide secure multicast communications. The

proposed algorithm has two dimensional focuses namely Minimal computation complexity

and minimal communication overhead. When the key size is small (key size=8 digits) the

computation time decreases by 0.2 milliseconds and when the key size increases (16 or 32

digits), the computation time decreases by 0.15-0.18 milliseconds for updating a single key

from any level of the ternary tree. With respect to the communication time, the

communication delay is reduced in this work by 0.15-0.23 milliseconds when the key size

ranges from 8-digits to 16-digits. Further extensions to this work are to devise techniques for

reducing the storage complexity which is the amount of storage required to store the key

related information, both in GC and group members area.

References

[1] Vijayakumar,P., Bose,S., Kannan,A., and Siva Subramanian,S., “A secure key distribution

protocol for multicast communication,” Balasubramaniam P. (eds.) Gandhigram-India,

CCIS.,Vol.140, Springer, Heidelberg, 2011, pp. 249-257. Article (CrossRef Link)

[2] Vijayakumar,P., Bose,S., Kannan,A., “Centralized Key Distribution Protocol using the Greatest

Common Divisor Method,” Computers & Mathematics with Applications, Elsevier, Article

Online. Article (CrossRef Link)

[3] Mingyan Li, Poovendran,R., David McGrew,A., “Minimizing center key storage in hybrid one-

way function based group key management with communication constraints,” Elsevier,

Information Processing Letters, Vol.93, No.4, pp. 191-198, 2004. Article (CrossRef Link)

[4] Patrick P.C Lee, John C. S Lui, David K.Y Yau, “Distributed collaborative key agreement

protocols for dynamic peer groups,” in Proc. of the IEEE International Conference on Network

Protocols, pp. 322, 2002. Article (CrossRef Link)

[5] Lihao Xu, Cheng Huang, “Computation-efficient multicast key distribution,” IEEE Transactions

on Parallel and Distributed Systems, Vol.19,No.5, pp. 1-10,2008. Article (CrossRef Link)

http://www.springerlink.com/content/?Author=P.+Vijayakumar
http://www.springerlink.com/content/?Author=S.+Bose
http://www.springerlink.com/content/?Author=A.+Kannan
http://www.springerlink.com/content/?Author=S.+Siva+Subramanian
http://www.springerlink.com/content/?Editor=P.+Balasubramaniam
http://link.springer.com/chapter/10.1007%2F978-3-642-19263-0_30
http://www.springerlink.com/content/?Author=P.+Vijayakumar
http://www.springerlink.com/content/?Author=S.+Bose
http://www.springerlink.com/content/?Author=A.+Kannan
http://dx.doi.org/doi:10.1016/j.camwa.2012.01.038
http://dx.doi.org/10.1016/j.ipl.2004.10.012
http://dx.doi.org/doi:10.1109/ICNP.2002.1181419
http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.70759

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 893

Copyright ⓒ 2013 KSII

[6] Wade Trappe, Jie Song, Radha Poovendran, K. J Ray Liu, “Key distribution for secure

multimedia multicasts via data embedding,” in Proc. of IEEE International Conference on

Acoustics, Speech, and Signal Processing, Vol. 3, pp. 1449-1452, 2001. Article (CrossRef Link)

[7] Lee,J.S., Son,J.H., Park, Y.H.,Seo,S.W., “Optimal level-homogeneous tree structure for logical

key hierarchy,” in Proc. of IEEE Conference on Communication System Software and

Middleware Workshop (COMSWARE), 2008. Article (CrossRef Link)

[8] Dong-Hyun Je, Jun-Sik Lee, Yongsuk Park, Seung-Woo Seo, “Computation-and-storage-

efficient key tree management protocol for secure multicast communications,” Elsevier,

Computer Communications, Vol.33, No.6, pp. 136-148, 2010. Article (CrossRef Link)

[9] Wong, C., Gouda,M., and Lam,S., “Secure group communications using key graphs, IEEE/ACM

Transactions on Networking,” Vol. 8, No.1, pp.16-30, 2000. Article (CrossRef Link)

[10] David,A., McGrew and Alan T. Sherman, “Key establishment in large dynamic groups using

one-way function trees,” IEEE Transactions on software engineering, Vol.29,No.5, pp. 444-458,

2003. Article (CrossRef Link)

[11] Poovendran,R., Baras,J.S., “An information-theoretic approach for design and analysis of rooted-

tree-based multicast key management schemes,” IEEE Transactions on Information Theory, Vol.

47, No.7, pp. 2824–2834, 2001. Article (CrossRef Link)

[12] Wade Trappe, Jie Song, Radha Poovendran, Ray Liu K J, “Key management and distribution for

secure multimedia multicast,” IEEE Transactions on Multimedia,Vol.5,No.4, pp. 544-557, 2003.

Article (CrossRef Link)

[13] Xianjin Fang, Longshu Li, “On karatsuba multiplication algorithm,” in Proc. of 7th Int. Data,

Privacy, and E-Commerce Symp., Washington, DC, USA, pp. 274-276, 2007. Article (CrossRef

Link)

[14] Tom St Denis, “Bignum math implementing cryptographic multiple precision arithmetic,”

SYNGRESS Publishing, 2003. Article (CrossRef Link)

[15] Meftah,S., Razali,R., Samsudin,A., Budiator,R., “Enhancing public-key cryptosystem using

parallel karatsuba algorithm with socket programming,” in Proc. of 9th Asia-Pacific Conference

on Coomunication, Penang, Malaysia, September 21-24, pp. 706-710, 2003. Article (CrossRef

Link)

[16] Jebelean,T., “Using the parallel karatsuba algorithm for long integer multiplication and division,”

in Proc. of European Conference on Parallel Processing, in Lecture Notes in Computer Science,

pp. 1169-1172, 1997. Article (CrossRef Link)

[17] Vijayakumar,P., Bose,S., Kannan,A., and Siva Subramanian,S., “An effective key distribution

protocol for secure multicast communication,” in Proc. of IEEE International Conference on

Advanced Computing, Chennai, December 14-16, pp. 102-107, 2010. Article (CrossRef Link)

[18] Sandeep S. Kulkarni, Bezawada Bruhadeshwar, “Key-update distribution in secure group

communication,” Elsevier, Computer Communications,Vol. 33,No.6, pp.689-705, 2010. Article

(CrossRef Link)

[19] Bezawada Bruhadeshwar, Kishore Kothapalli, “A family of collusion resistant symmetric key

protocols for authentication,” ICDCN, pp. 387-392, 2008. Article (CrossRef Link)

[20] Bezawada Bruhadeshwar, Kishore Kothapalli, Maddi Sree Deepya, “Reducing the cost of session

key establishment,” ARES, pp. 369-373, 2009. Article (CrossRef Link)

[21] Bezawada Bruhadeshwar, Kishore Kothapalli, Poornima,M., Divya,M., “Routing protocol

security using symmetric key based techniques,” ARES, pp. 193-200, 2009. Article (CrossRef

Link)

[22] MacWilliams,F.J., and Sloane,N.J.A., “The theory of error correcting codes,” North-Holland

Math. Library,1977. Article (CrossRef Link)

[23] Adrian Perrig, Dawn Song, Tygar,J.D., “ELK: a new protocol for efficient large-group key

distribution,” in Proc. of IEEE Symposium on Security and Privacy Symposium, pp. 247–262,

2001. Article (CrossRef Link)

http://dx.doi.org/10.1109/ICASSP.2001.941203
http://dx.doi.org/10.1109/COMSWA.2008.4554497
http://www.informatik.uni-trier.de/~ley/db/journals/comcom/comcom33.html#KulkarniB10
http://dx.doi.org/10.1016/j.comcom.2009.08.007
http://dx.doi.org/10.1109/90.836475
http://dx.doi.org/10.1109/TSE.2003.1199073
http://dx.doi.org/10.1109/18.959263
http://dx.doi.org/10.1109/TMM.2003.813279
http://portal.acm.org/author_page.cfm?id=81361602580&coll=DL&dl=ACM&trk=0&cfid=16328031&cftoken=67853695
http://portal.acm.org/author_page.cfm?id=81361603430&coll=DL&dl=ACM&trk=0&cfid=16328031&cftoken=67853695
http://10.0.4.85/ISDPE.2007.11
http://10.0.4.85/ISDPE.2007.11
http://bookos.org/book/444918
http://dx.doi.org/doi:10.1109/APCC.2003.1274449
http://dx.doi.org/doi:10.1109/APCC.2003.1274449
http://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.49.7271
http://www.springerlink.com/content/?Author=P.+Vijayakumar
http://www.springerlink.com/content/?Author=S.+Bose
http://www.springerlink.com/content/?Author=A.+Kannan
http://www.springerlink.com/content/?Author=S.+Siva+Subramanian
http://dx.doi.org/doi:10.1109/ICOAC.2010.5725367
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kulkarni:Sandeep_S=.html
http://www.informatik.uni-trier.de/~ley/db/journals/comcom/comcom33.html#KulkarniB10
http://dx.doi.org/10.1016/j.comcom.2009.11.014
http://dx.doi.org/10.1016/j.comcom.2009.11.014
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kothapalli:Kishore.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdcn/icdcn2008.html#BruhadeshwarK08
http://dl.acm.org/citation.cfm?id=1785904
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kothapalli:Kishore.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Deepya:Maddi_Sree.html
http://www.informatik.uni-trier.de/~ley/db/conf/IEEEares/ares2009.html#BruhadeshwarKD09
http://doi.ieeecomputersociety.org/10.1109/ARES.2009.162
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kothapalli:Kishore.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Poornima:M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Divya:M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/IEEEares/ares2009.html#BruhadeshwarKPD09
http://dx.doi.org/doi:10.1109/ARES.2009.147
http://dx.doi.org/doi:10.1109/ARES.2009.147
http://www.amazon.com/Theory-Error-Correcting-North-Holland-Mathematical-Library/dp/0444851933
http://dx.doi.org/doi:10.1109/SECPRI.2001.924302

894 P. Vijayakumar et al.: Computation and Communication Efficient Key Distribution Protocol

[24] Harney,H., Harder,E., “Logical key hierarchy protocol,” Internat Draft, IETF, Expired in August

1999. Article (CrossRef Link)

[25] Xixiang Lv and Hui Li, “Group Key Agreement From Signcryption,” KSII transactions on

internet and information systems, Vol. 6, No. 12, pp. 3338-3351, Dec 2012. Article (CrossRef

Link)

[26] Guiyi Wei, Xianbo Yang and Jun Shao, “Efficient Certificateless Authenticated Asymmetric

Group Key Agreement Protocol,” KSII transactions on internet and information systems, Vol. 6,

No.12, pp.3352-3365, Dec 2012. Article (CrossRef Link)

P.VijayaKumar completed his Ph.D in Computer Science and Engineering in Anna

University Chennai in the year 2013. He Completed Master of Engineering in the

field of Computer Science and Engineering in Karunya Institute of Technology

affiliated under Anna University Chennai in the year 2005. He completed his

Bachelor of Engineering under Madurai Kamarajar University, Madurai in the year

2002. He was working as a Senior lecturer in All Nations University Ghana, West

Africa from 2007 to 2008. He is presently working as an Assistant Professor at Anna

University Chennai (University College of Engineering, Tindivanam), Chennai,

India. His main thrust research areas are Key management in Network Security and

Multicasting in Computer Networks.

S.Bose has completed his Master of Engineering in the field of Computer Science

and Engineering in the year 1996, affiliated under Madurai Kamarajar University,

Madurai. After completion, he was working as a lecturer in Anna University

Chennai, India. He received the doctoral program (Ph.D.) degree in Computer

Science and Engineering from Anna University Chennai, India in the year 2007.

Henceforth, he is working as an Assistant Professor in the Department of Computer

Science and Engineering at Anna University Chennai. He has done various projects

in the area of Computer and Network Security and he has published large numbers of

paper in the field of Intrusion Detection Systems.

A. Kannan completed his Master of Engineering in the field of Computer Science

and Engineering in Anna University Chennai, India in the year 1991. After

completion, he was working as an Assistant Professor in Anna University Chennai,

India. He received his Ph.D. degree in Computer Science and engineering from Anna

University Chennai, India in the year 2000. He is presently working as a Professor in

the Department of Computer Science and Engineering, Anna University Chennai,

Chennai. He is also working as a Deputy Director for distance education programs.

He has successfully produced sixteen PhD candidates. He has published more than

hundred papers in various fields of several reputed journals like Elsevier, Springer,

IET, etc. His main thrust areas of interests are Artificial Intelligence and Data Base

Management Systems.

L.Jegatha Deboarh completed her Ph.D in Computer Science and Engineering in

Anna University Chennai in the year 2013 and completed her Master of Engineering

in the field of Computer Science and Engineering in Karunya Institute of

Technology affiliated under Anna University Chennai in the year 2005. She

completed her Bachelor of Engineering under Madurai Kamarajar University,

Madurai in the year 2002. She was working as a Senior lecturer in All Nations

University Ghana, West Africa from 2007 to 2008. She is presently working as an

Assistant Professor at Anna University Chennai (University College of Engineering,

Tindivanam), Chennai, India.

http://tools.ietf.org/html/draft-harney-sparta-lkhp-sec-00
http://dx.doi.org/10.3837%2Ftiis.2012.12.017
http://dx.doi.org/10.3837%2Ftiis.2012.12.017
http://dx.doi.org/10.3837/tiis.2012.12.018

