• 제목/요약/키워드: Kalman Learning

검색결과 59건 처리시간 0.025초

딥러닝 기반 소형선박 승선자 조난 인지 시스템 (Deep Learning based Distress Awareness System for Small Boat)

  • 전해명;노재규
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.281-288
    • /
    • 2022
  • According to statistics conducted by the Korea Coast Guard, the number of accidents on small boats under 5 tons is increasing every year. This is because only a small number of people are on board. The previously developed maritime distress and safety systems are not well distributed because passengers must be equipped with additional remote equipment. The purpose of this study is to develop a distress awareness system that recognizes man over-board situations in real time. This study aims to present the part of the passenger tracking system among the small ship's distress awareness situational system that can generate passenger's location information in real time using deep learning based object detection and tracking technologies. The system consisted of the following steps. 1) the passenger location information is generated in the form of Bounding box using its detection model (YOLOv3). 2) Based on the Bounding box data, Deep SORT predicts the Bounding box's position in the next frame of the image with Kalman filter. 3) When the actual Bounding Box is created within the range predicted by Kalman-filter, Deep SORT repeats the process of recognizing it as the same object. 4) If the Bounding box deviates the ship's area or an error occurs in the number of tracking occupant, the system is decided the distress situation and issues an alert. This study is expected to complement the problems of existing technologies and ensure the safety of individuals aboard small boats.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

UKF 기반 2-자유도 진자 시스템의 파라미터 추정 (Parameter Estimation of 2-DOF System Based on Unscented Kalman Filter)

  • 승지훈;김태영;아티야 아미어;팔로스 알렉산더;정길도
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1128-1136
    • /
    • 2012
  • In this paper, the states and parameters in a dynamic system are estimated by applying an Unscented Kalman Filter (UKF). The UKF is widely used in various fields such as sensor fusion, trajectory estimation, and learning of Neural Network weights. These estimations are necessary and important in determining the stability of a mobile system, monitoring, and predictions. However, conventional approaches are difficult to estimate based on the experimental data, due to properties of non-linearity and measurement noises. Therefore, in this paper, UKF is applied in estimating the states and parameters needed. An experimental dynamic system has been set up for obtaining data and the experimental data is collected for parameter estimation. The measurement noises are primarily reduced by applying the Low Pass Filter (LPF). Given the simulation results, the estimated error rate is 39 percent more efficient than the results obtained using the Least Square Method (LSM). Secondly, the estimated parameters have an average convergence period of four seconds.

모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리 (Learning-based Inertial-wheel Odometry for a Mobile Robot)

  • 김명수;장근우;박재흥
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

Tracking Players in Broadcast Sports

  • Sudeep, Kandregula Manikanta;Amarnath, Voddapally;Pamaar, Angoth Rahul;De, Kanjar;Saini, Rajkumar;Roy, Partha Pratim
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.257-264
    • /
    • 2018
  • Over the years application of computer vision techniques in sports videos for analysis have garnered interest among researchers. Videos of sports games like basketball, football are available in plenty due to heavy popularity and coverage. The goal of the researchers is to extract information from sports videos for analytics which requires the tracking of the players. In this paper, we explore use of deep learning networks for player spotting and propose an algorithm for tracking using Kalman filters. We also propose an algorithm for finding distance covered by players. Experiments on sports video datasets have shown promising results when compared with standard techniques like mean shift filters.

Model predictive control combined with iterative learning control for nonlinear batch processes

  • Lee, Kwang-Soon;Kim, Won-Cheol;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.299-302
    • /
    • 1996
  • A control algorithm is proposed for nonlinear multi-input multi-output(MIMO) batch processes by combining quadratic iterative learning control(Q-ILC) with model predictive control(MPC). Both controls are designed based on output feedback and Kalman filter is incorporated for state estimation. Novelty of the proposed algorithm lies in the facts that, unlike feedback-only control, unknown sustained disturbances which are repeated over batches can be completely rejected and asymptotically perfect tracking is possible for zero random disturbance case even with uncertain process model.

  • PDF

IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류 (Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals)

  • 이현빈;이창준;이정근
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.

사각지대를 고려한 이동로봇의 인공표식기반 위치추정시스템 (Landmark based Localization System of Mobile Robots Considering Blind Spots)

  • 허동혁;박태형
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.156-164
    • /
    • 2011
  • This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

비행로봇의 항공 영상 온라인 학습을 통한 지상로봇 검출 및 추적 (UGR Detection and Tracking in Aerial Images from UFR for Remote Control)

  • 김승훈;정일균
    • 로봇학회논문지
    • /
    • 제10권2호
    • /
    • pp.104-111
    • /
    • 2015
  • In this paper, we proposed visual information to provide a highly maneuverable system for a tele-operator. The visual information image is bird's eye view from UFR(Unmanned Flying Robot) shows around UGR(Unmanned Ground Robot). We need UGV detection and tracking method for UFR following UGR always. The proposed system uses TLD(Tracking Learning Detection) method to rapidly and robustly estimate the motion of the new detected UGR between consecutive frames. The TLD system trains an on-line UGR detector for the tracked UGR. The proposed system uses the extended Kalman filter in order to enhance the performance of the tracker. As a result, we provided the tele-operator with the visual information for convenient control.