Acknowledgement
This work was supported by Imdang Scholarship & Cultural Foundation
References
- J. Borenstein and L. Feng, "Measurement and correction of systematic odometry errors in mobile robots," IEEE Transactions on robotics and automation, vol. 12, no. 6, pp. 869-880, Dec., 1996, DOI: 10.1109/70.544770.
- K. S. Chong and L. Kleeman, "Accurate odometry and error modelling for a mobile robot," IEEE International Conference on Robotics and Automation (ICRA), Albuquerque, USA, vol. 4, pp. 2783-2788, 1997, DOI: 10.1109/ROBOT.1997.606708.
- A. Martinelli, N. Tomatis, and R. Siegwart, "Simultaneous localization and odometry self calibration for mobile robot," Autonomous Robots, vol. 22, pp. 75-85, 2007, DOI: 10.1007/s10514-006-9006-7.
- A. Angelova, L. Matthies, D. Helmick, and P. Perona, "Slip prediction using visual information," Robotics: Science and Systems, Pennsylvania, USA, 2006, DOI: 10.15607/RSS.2006.II.014.
- D. M. Helmick, S. I. Roumeliotis, Y. Cheng, D. S. Clouse, M. Bajracharya, and L. H. Matthies, "Slip-compensated path following for planetary exploration rovers," Advanced Robotics, vol. 20, no. 11, pp. 1257-1280, Apr., 2012, DOI: 10.1163/156855306778792470.
- T. Qin, P. Li, and S. Shen, "Vins-mono: A robust and versatile monocular visual-inertial state estimator," IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, Aug., 2018, DOI: 10.1109/TRO.2018.2853729.
- T. Qin and S. Shen, "Online temporal calibration for monocular visual-inertial systems," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 3662-3669, 2018, DOI: 10.1109/IROS.2018.8593603.
- J. Zhang and S. Singh, "Loam: Lidar odometry and mapping in real-time," Robotics: Science and Systems, Berkeley, USA, pp. 1-9, 2014, DOI: 10.15607/RSS.2014.X.007.
- T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, "LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, pp. 5135-5142, 2020, DOI: 10.1109/IROS45743.2020.9341176.
- S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, "Super odometry: Imu-centric lidar-visual-inertial estimator for challenging environments," 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, pp. 8729-8736, 2021, DOI: 10.1109/IROS51168.2021.9635862.
- J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, and J. Liu, "Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation," IEEE transactions on robotics, vol. 25, no. 5, pp. 1087-1097, Oct., 2009, DOI: 10.1109/TRO.2009.2026506.
- U. Onyekpe, V. Palade, A. Herath, S. Kanarachos, and M. E. Fitzpatrick, "Whonet: Wheel odometry neural network for vehicular localisation in gnss-deprived environments," Engineering Applications of Artificial Intelligence, vol. 105, pp. 104421, Oct., 2021, DOI: 10.1016/j.engappai.2021.104421.
- M. Brossard, A. Barrau, and S. Bonnabel, "Ai-imu dead-reckoning," IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 585-595, Dec., 2020, DOI: 10.1109/TIV.2020.2980758.
- M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, "Orinet: Robust 3-d orientation estimation with a single particular imu," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 399-406, Apr., 2020, DOI: 10.1109/LRA.2019.2959507.
- M. Brossard, S. Bonnabel, and A. Barrau, "Denoising imu gyroscopes with deep learning for open-loop attitude estimation," IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4796-4803, Jul., 2020, DOI: 10.1109/LRA.2020.3003256.
- S. Herath, H. Yan, and Y. Furukawa, "Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations, & new methods," 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 3146-3152, 2020, DOI: 10.1109/ICRA40945.2020.9196860.
- W. Liu, D. Caruso, E. Ilg, J. Dong, A. I. Mourikis, K. Daniilidis, V. Kumar, and J. Engel, "Tlio: Tight learned inertial odometry," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5653-5660, Oct., 2020, DOI: 10.1109/LRA.2020.3007421.
- M. Zhang, M. Zhang, Y. Chen, and M. Li, "IMU data processing for inertial aided navigation: A recurrent neural network based approach," 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, pp. 3992-3998, 2021, DOI: 10.1109/ICRA48506.2021.9561172.
- M. Brossard and S. Bonnabel, "Learning wheel odometry and imu errors for localization," 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 291-297, 2019, DOI: 10.1109/ICRA.2019.8794237.
- A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? the kitti vision benchmark suite," 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, pp. 3354-3361, 2012, DOI: 10.1109/CVPR. 2012.6248074.
- J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, "Complex urban dataset with multi-level sensors from highly diverse urban environments," The International Journal of Robotics Research, vol. 38, no. 6, pp. 642-657, Apr., 2019, DOI: 10.1177/0278364919843996.
- N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, "University of michigan north campus long-term vision and lidar dataset," The International Journal of Robotics Research, vol. 35, no. 9, pp. 1023-1035, Dec., 2015, DOI: 10.1177/0278364915614638.
- M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart, "The euroc micro aerial vehicle datasets," The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157-1163, Jan., 2016, DOI: 10.1177/0278364915620033.
- D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stuckler, and D. Cremers, "The tum vi benchmark for evaluating visual-inertial odometry," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 1680-1687, 2018, DOI: 10.1109/IROS.2018.8593419.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "PyTorch: An imperative style, high-performance deep learning library," Advances in neural information processing systems, vol. 32, 2019, [Online], paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980, Dec., 2014, DOI: 10.48550/arXiv.1412.6980.
- V. Peretroukhin and J. Kelly, "DPC-Net: Deep pose correction for visual localization," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2424-2431, Jul., 2018, DOI: 10.1109/LRA.2017.2778765.