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I. INTRODUCTION  

  Information regarding sports videos has always been 

coveted. Due to the nature of sports and the sheer following 

behind it the popularity of statistical analysis of sports 

videos is highly desired. A need for a tracker of players that 

can work on several sports and robust to handle different 

situations such as occluded players, low-lit conditions and 

to be able to handle fast paced sports with several awkward 

positions of players is that might even work in a live 

scenario (broadcast sports such as the NBA or FIFA) is 

extremely in demand. This paper is an attempt to solve this 

issue by providing an architecture by which one could 

create such an efficient tracker that could track players in 

the live scenario and also be robust in nature to handle all 

the aforementioned situations. A simple yet moderately 

effective approach already existing was to identify the 

background of the field and use background subtraction to 

track the players by calculating the absolute difference, 

applying erosion and dilution and obtaining the contours. 

Such a system works when the object is singular with a 

clear background. However our situation is much more 

difficult. Issues arose when players overlapped amongst 

each other and many false positives were detected. Also 

such a tracker could not applied to situations where the 

whole court was not in view: such as the NBA basketball 

videos. However, this tracker also fails to track broadcast 

sports. The next attempt was to use a Meanshift tracker [4] 

to track players in the our sports videos, but this attempt 

was partially successful. The Meanshift Tracker is fast and 

works well, however when players get occluded, or when 

similar colors in the background appear the tracker fails to 

identify the next position. Hence, we need a tracker that 

could predict the next location and can handle occluded 

situations. Also this tracker cannot identify players in a 

broadcast scenario. Of note, certain sports videos such as 

tennis and badminton were tracked using this method with 

accurate results. This is because the number of players in 

these sports are 2 players and they rarely get occluded.  

Therefore we identified certain challenges: The first 

challenge was to be able to track players in a broadcast 

scenario. We used a Convolutional Neural Network by 

feeding it images of court view shots and non-court view 

shots such as advertisements, etc. The second issue was 

detecting the players even in occluded conditions with a 

high accuracy. We use machine learning pre-trained models 

that can detect humans that has been trained on extremely 

large datasets and provide accurate results for low-

resolution images seemed like a way to go. Such models are 

available for the public domain. The final issue was to be  

 

II. RELATED WORK 

  

Object Detection and Tracking is a vast area and many 

strategies and methodologies are tried to achieve results. In 

order to track players several papers have defined efficient 
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tracking algorithms and methodologies such as the KCF 

Tracker [3], and the Mean-shift tracker[4]. The KCF 

Tracker is a kernel algorithm and the mean-shift algorithm 

is used for Mean-Shift Tracker. These tracker efficiently 

track objects, tracking them at high fps, however they fail 

tracking when players are small in size with respect to the 

overall region or moving at relatively high speeds. A recent 

approach that is interesting lead to object detection in 

complex environments using background subtraction for 

fast tracking[8].However, important to note is all these 

trackers lack a global view of the scene and thus usually fail 

to track players when occlusion occurs. Kalman Filter was 

also used to track objects even in occluded situations at high 

speeds with predictive capabilities. Our papers borrows 

ideas from [9] and the ability of the Kalman filter to predict 

new positions based on past information. Tracking objects 

in this way alone is not sufficient for our use-case because 

of the aforementioned problems. Therefore a need arose to 

find a different method to detect players. With the rise of 

neural nets in recent times we employ a pre-trained model 

derived from [5] that uses resnet [2] and faster r-cnn [13] to 

deliver incredible results in the field of image object 

identification. We use this information to create model 

architecture that can dynamically detect and track players 

in most conditions. Statistical analysis of players is done 

with simple euclidean geometry. Our proposed model 

incorporates these ideas into a single flow and tries a 

different approach to track players and map them to a top-

down view for statistical analysis. Meanshift Tracking is 

done by using the mean-shift algorithm. The meanshift 

algorithm is an efficient approach to tracking objects whose 

appearance is defined by histograms. The meanshift 

algorithm moves our window to the new location with 

maximum density. A confidence map is created in the image 

and based on the color histogram of our tracking object that 

was obtained in the previous image, we use mean shift to 

find the peak of the confidence map near the region of the 

object’s old position. The peak will point us to the new 

location and hence we track this mean. This can be used to 

track not only color space but any system that contains 

histograms. 

The Kalman filter model assumes that the state of a system 

at a time 𝑡  evolved from the prior state at time 𝑡 − 1 

according to the equation 

 

 𝒙𝒕 = 𝑭𝒕𝒙𝒕−𝟏 + 𝑩𝒕𝒖𝒕 + 𝒘𝒕 (1) 

 

where 𝑥𝑡 is the state vector containing the terms of interest 

for the system (e.g., position, velocity, heading) at time 𝑡, 

𝐹𝑡 is the state transition matrix which applies the effect of 

each system state parameter at time 𝑡 −  1 on the system 

state at time 𝑡 (e.g., the position and velocity at time 𝑡 −

1  both affect the position at time 𝑡 ). 𝑢𝑡  is the vector 

containing any control inputs (steering angle, throttle 

setting, braking force). 𝐵𝑡  is the control input matrix 

which applies the effect of each control input parameter in 

the vector 𝑢𝑡  on the state vector. 𝑤𝑡  is the vector 

containing the process noise terms for each parameter in the 

state vector. The process noise is assumed to be drawn from 

a zero mean multivariate normal distribution given a 

covariance matrix. Measurements of the system can also be 

performed, according to the model 

 

 𝒛𝒕 = 𝑯𝒕𝒙𝒕 + 𝒗𝒕 (2) 

 

where 𝑧𝑡  is the vector of measurements, 𝐻𝑡  is the 

transformation matrix that maps the state vector parameters 

into the measurement domain, 𝑣𝑡 is the vector containing 

the measurement noise terms for each observation in the 

measurement vector. This gives us the prediction of the new 

state which can be used to give the next most likely position 

of the player. Any two images of the same planar surface in 

space are related by a homography. Homography can be 

used to map different planar structures amongst each other 

if we assume them to be the same or similar. Once camera 

rotation and translation have been extracted from an 

estimated homography matrix, this information may be 

used for navigation or even map points from one 

perspective to another. 

 

1. Convolutional Neural Networks 

The four main building blocks to define a basic 

convolutional neural network are Input Layer, 

Convolutional Layer, Pooling Layer, Output Layer. The 

input layer consists of the image as an n x n dimensional 

array. The convolution layer is the main building block of a 

convolutional neural network. The convolution layer 

comprises of a set of independent filters. Each filter is 

independently convolved with the image to obtain the 

corresponding feature maps. The pooling layers function is 

to progressively reduce the spatial size of the representation 

to reduce the amount of parameters and computation in the 

network. Pooling layer operates on each feature map 

independently. The output layer is fully connected to the 

previous layer and predicts the output of the system. The 

Network is trained with images and the weights and biases 

of the connections are updated by using backpropagation. 

 

 

III. PROPOSED MODEL ARCHITECTURE 

 

In order to achieve our desired results we have come up 

with a model architecture to track players in broadcast 

sports as shown in Figure 1. 
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Fig. 1. Model Architecture 

 

For each frame we first send it through the shot-segmenter 

module in order to determine whether the frame is a view 

of the game or some other image. If negative we discard the 

frame and take the next frame. We want to only display 

game-view images in our resultant video and hence we 

proceed only if the result is positive. We then send the frame 

through a pre-trained object detection neural network to 

identify the bounding boxes of players. Once we get the 

bounding boxes of the players we track the players using an 

appropriate tracker to keep track of the player and predict 

his next position [5]. After this we map the player’s location 

to the corresponding point on the homographic top view of 

the court or field. Then based on the dimensions of the field 

we can calculate the distance travelled by the player. 

 

1. Shot Segmentation 

During certain game videos such as the NBA videos, the 

videos have advertisements, close up views of players and 

other frames in the video which are undesirable. In order to 

eliminate such shots and leave only the game video 

containing the players on the court we have developed a 

convolutional neural network to classify whether a given 

image is court-view or not. The CNN has 6 layers and takes 

(64,128) size images using the Adam optimizer. Actual size 

images are 854 x 480 pixels in dimensions and so we resize 

our image to 64 x 128 pixels and send it into the CNN. 

 

2. Detecting Players 

In order to detect the player locations we need to be able 

to identify humans in pictures. To do this we use a pre-

trained model to identify bounding boxes of human-like 

figures in our frame. The way we achieve this is two-fold. 

First our image is of very high resolution: 4450 x 2000 

pixels. The pre-trained model does not give accurate results 

as it scales the images to 300x300 pixels. Therefore we take 

our image and segment it into many images (around 150) 

and send it to the model to identify the players. The second 

step is to eliminate overlapping images and false positives. 

This can be done by comparing area of the bounding box, 

ratio of the bounding box and distance between the 

bounding boxes and the rgb histograms of the boxes. The 

players are then successfully identified. The last step in this 

process is to select the model for detecting player locations. 

 

3. Team Classification 

After detecting the players we need to identify the teams 

in which they belong to. In order to identify which team the 

player belongs to we use RGB Histograms. Whatever the 

game we take instances of players of both teams. And then 

we use those pre-computed RGB Histograms of players and 

compare them to the histogram of our current bounding box. 

The closest result is given as the corresponding team [10]. 

As the colors are usually far apart this usually gives high 

accuracy. If the area has large differences to both the pre-

computed histograms then we can even discard this 

bounding box before proceeding. This occurs for example 

if the referee is identified or if a player in the crowd is 

identified. 

 

4. Tracking Players 

For tracking players we use a two-step process. Using the 

pre-trained model to identify the locations of the players for 

every frame takes too long for tracking and hence the need 

arises to use a tracker. In order to predict the next location 

of the player we use Kalman Filter based on the last known 

location and last known velocity [6]. After a set number of 

fixed frames we use the ML model to find the correct 

current location and update our tracker accordingly. 

Therefore the tracker tracks the player for some time and is 

fast and after the predetermined fixed number of frames, the 

tracker is corrected based on the correct location of the 

player. The proposed algorithm for detecting players is 

given in Algorithm 1. 

 

Algorithm 1  Player Tracking 

1 𝐟𝐫𝐚𝐦𝐞_𝐜𝐨𝐮𝐧𝐭 ← number of frames to wait before 
correcting Kalman filter 

2 while 𝒕𝒓𝒖𝒆 do 

3   𝒊 ← 𝟎 

4   𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈_𝒃𝒐𝒙𝒆𝒔 ← bounding boxes of all 
currently tracked players 

5   if 𝒊 >  𝒇𝒓𝒂𝒎𝒆_𝒄𝒐𝒖𝒏𝒕 then 

6     𝒏𝒆𝒘_𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒃𝒐𝒙𝒆𝒔 ←find bounding boxes 
using pre-trained model 

7     for each 𝒃𝒐𝒙 𝝐 𝒏𝒆𝒘_𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒃𝒐𝒙𝒆𝒔 do 

8      
𝒎𝒂𝒕𝒄𝒉𝑩𝒐𝒙(𝒏𝒆𝒘_𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒃𝒐𝒙𝒆𝒔, 𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈_𝒃𝒐𝒙𝒆𝒔) 

9       correct the corresponding tracker’s Kalman filter 
state 

10     end for 

11     𝒊 ← 𝟎 

12   end if 

13   𝒊 ← 𝒊 + 𝟏 
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14   for each 𝒃𝒐𝒙 𝝐 𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈_𝒃𝒐𝒙𝒆𝒔 do 

15     𝒅𝒓𝒂𝒘(𝒃𝒐𝒙) 

16   end for 

17   display frame on screen 

18 end while 

 

5. Matching Players 

The 𝑚𝑎𝑡𝑐ℎ𝐵𝑜𝑥 function arises as a need to match new 

and old player locations. Essentially, in order to update the 

tracker using the correct location we need to know which 

player location (obtained from the ML model) corresponds 

to which player (from the tracker). This is done using our 

matching algorithm which is essentially to find the nearest 

box to the given box and match it. Our matching algorithm 

takes all the bounding boxes and checks within a pixel 

radius for bounding boxes (compares only new bounding 

boxes obtained from the ML Model). This pixel radius is 

defined as product of the number of frames and a constant 

in order to map the bounding box within an appropriate 

radius. If there are multiple bounding boxes near that 

corresponding player we match it with the one with nearest 

distance. After the matching of one box is complete we 

eliminate that box from the list so as to avoid repetitions. 

Two cases arise in this situation. If the number of new boxes 

are equal to the number of previous boxes then the players 

are matches as a bijections. However, if the number of new 

boxes are more than the number of previously identified 

boxes then the extra boxes are added to the list of tracked 

players (assuming the boxes represent players based on 

their histograms). If the number of new boxes are less than 

the number of previous boxes we pass on the missing box 

as is. This is because there may be a future frame where the 

player is identified again and then this will help in resuming 

his movement and getting consistent statistic results. 

 

6. Top View Conversion 

After tracking we need to map each player location to the 

top down view of the field of the corresponding sport. In 

Figure 2a we have the panoramic football field containing 

the players. In Figure 2b we have the top down view of a 

football field. In order to map the locations we compute the 

homography between the two images by mapping points 

around the boundary of the two images. However as the first 

frame is a panoramic view this poses a challenge. We used 

a unique method to calculate the homography. 

 

  
  (a)                        (b) 

Fig. 2. The background image that has to be mapped to the top 

view of the football field. 

 

We partitioned the image into 8 different areas each 

represented by a color as shown in Figure 3. Each of these 

individual parts are mapped to the corresponding area in the 

topview image. We calculate the individual homography 

transition matrices for all 8 divisions and assign it to the 

corresponding color. Now in order to map the player we 

find the foot position of the player and find which color 

region this position belongs to by identifying the pixel color 

of the corresponding pixel in Figure 3. Hence we find the 

corresponding homography matrix and transform the point 

to our top view image. 

 

 
Fig. 3. The 8 partitions divided into unique colors that represents 

the 8 different homographies. 

  

7. Distance and Trails 

Finally, we calculate the distance travelled by the players 

and the trail of the player on the top-view of the field. The 

distance is stored as a separate variable for each player. 

Between each frame we find the player locations calculate 

the Euclidean distance between them in pixels. We then use 

the aspect ratio of the top down view with respect to the size 

of an actual football field in order to calculate the distance 

travelled by each player by multiplying this constant with 

the distance calculated. In order to find the trail of the player 

we just define a number of frames where we store the 

players previous frame location and plot all of those points 

on the top-view image. After we exceed this limit we delete 

the oldest known location and append the newest. 

 

Algorithm 2  Finding the Actual Distance moved by 
the player 

1 𝑷𝑰𝑿𝑬𝑳𝑺_𝑻𝑶_𝑴𝑬𝑻𝑬𝑹𝑺 ←  ratio of top-view 
image to stadium 

2 𝒑𝒓𝒆𝒗 ← previous location of player 

3 𝒄𝒖𝒓 ← current location of player 

4 procedure 𝑭𝒊𝒏𝒅𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒑𝒓𝒆𝒗, 𝒄𝒖𝒓) 

5    𝒅𝒊𝒇𝒇𝑿 ← 𝒂𝒃𝒔(𝒄𝒖𝒓[𝒙] − 𝒑𝒓𝒆𝒗[𝒙]) 

6    𝒅𝒊𝒇𝒇𝒀 ← 𝒂𝒃𝒔(𝒄𝒖𝒓[𝒚] − 𝒑𝒓𝒆𝒗[𝒚]) 

7    𝒑𝒊𝒙𝒆𝒍_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 ←  √𝒅𝒊𝒇𝑿𝟐 + 𝒅𝒊𝒇 𝒀𝟐  

8    𝒓𝒆𝒕𝒖𝒓𝒏 𝑷𝑰𝑿𝑬𝑳𝑺_𝑻𝑶_𝑴𝑬𝑻𝑬𝑹𝑺
∗ 𝒑𝒊𝒙𝒆𝒍_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 

9 end procedure 

 

 

IV. EXPERIMENTS 
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In this section, we present the dataset information and the 

experimental details used in this work. 

 

1. Datasets and Ground Truths 

The dataset consists of 1000 video clips of NHL games. 

Each video clip consists of 50 frames. The resolution of 

each frame is 720 ×  576. The video frames are labeled into 

two classes i.e. fight and non-fight. Each video clip is 

further divided into two consecutive parts consisting of 25 

frames each to increase the number of training samples. 70% 

of the total data is used to train the networks, 10% for 

validation and the left 20% is used for testing the trained 

models. The training and validation clips are randomly 

picked from the dataset. The data is randomly shuffled after 

each epoch for robust training and testing. 

 

2. Datasets 

In this section, we discuss the different datasets we used 

to implement and test the proposed model architecture. 

Shot-Segmenter Dataset In order to train our shot 

segmenter we created our own dataset from 5 full-length 

NBA videos. Each video was approximately 90 minutes 

long. In order to get more diversified training data we took 

only a single frame for every five frames. We got around 

12000 frames per video and around 3000 negative images 

and 9000 positive image. We discarded 6000 random 

positive images as we wanted equal number of positive and 

negative matches for good results. Therefore, after all 5 

videos we ended up with a total of 15000 positive image 

results and 15000 negative image results. This was fed into 

a Convolutional Neural Network to create our shot-

segmenter. Football Dataset Here we required a panoramic 

view of the entire football field. This was obtained by using 

the dataset provided by [12]. They had 3 stable wide angle 

digital cameras setup on a football field with an actual 

match. The total video available is around 40 minutes of 

resolution 4450 x 2000 pixels. The video also contains the 

actual positions of the players in reference to the figure 

shown below. The soccer pitch is 105 x 68 m wide and valid 

in-field values for 𝑥 and 𝑦 are in the range of 0 ≤ 𝑥 ≤

105  and 0 ≤ 𝑦 ≤ 68  where 𝑥, 𝑦  represent player 

positions. Other Datasets, Other live videos were full length 

videos of various sports found on the internet. As our 

system was designed to track even in broadcast sports by 

identifying the court frames we have used direct video feed 

from multiple archived games. For example, for basketball 

tracking we have used Utah Jazz vs Oklahoma City 

Thunder match found by the YouTube research dataset 

provided by Google [1]. 

 

3. Model Architecture Implementation  

In this section we discuss the implementations of various 

parts of our model architecture. Shot-Segmenter We trained 

our shot-segmenter model for 50 epochs using adam-

optimizer with a learning rate of 0.0002. Then we take full 

length basketball videos and feed it into our shot-segmenter 

to get isolated court shots. After this video is just the same 

as the panoramic video of football. Then we send it through 

our model architecture with corresponding team classifiers 

and top-view images. Pre-Trained Models In order to detect 

the player locations we are using a pre-trained model. 

Several models are present with varying ranges of accuracy 

and speed. We have tested the following models [5][2][13]. 

We have chosen the Faster RCNN model due to its balance 

of accuracy and speed. Tracking Players We sent our 

panoramic video from our football dataset and sent it 

through our model architecture in order to track the players. 

We finally get the player positions of our tracker on the 

reference field after applying the homographic 

transformation. This value is compared to the actual 

positions of the players provided by the football dataset. 

 

V. RESULTS 

In this section, we present the results obtained by 

applying our method on National Hockey League (NHL) 

dataset. 

We show a comparative study between various methods 

of tracking the player. The methods used are Background 

Subtractor to identify Contours, Mean-Shift Tracking and 

Proposed Model Architecture.  

 

1 Qualitative Results  

After sending our video into our model architecture 

Figure 4a shows the detection of the bounding boxes of the 

players. After this we classify the teams based on their 

histograms to sort them into the two different teams. 

Boundary boxes whose ratios are inappropriate are 

eliminated and the Figure 4b shows the classification of the 

players. Black Boxes indicate a player of the black team. 

White Boxes indicate a player of the white team. Now 

we qualitatively compare the detection of players using 

background subtraction and contour drawing by erosion 

and dilation and through our model architecture. Figure 5a 

shows the detection using the background subtractor 

method. Players that are slightly occluded or interacting 

become shown as one single player which is incorrect and 

inaccurate. However our model correctly identifies players 

that are close to each other even though they are extremely 

small as shown in Figure 5b. 
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(a) 

 
(b) 

Fig. 4: Figures showing detection and team classification of 

players using our mode 

 

(a) 
 

 
 

 (b) 
Fig. 5: Figures showing the player detection using background 

subtraction model and our model. 

 

2. Quantitative Results 

Figure 6 shows the results of the shot segmenter in the 

proposed model. Figure 6a depicts a positive match of the 

court and Figure 6b shows a negative match where a close 

up of a player is found. The accuracy of our shot segmenter 

is 96.4%. As it is an implementation of the AlexNet 

architecture [7] it is quite fast and can be used to show the 

live segmentation of shots in broadcast sports. 

 

 
  (a)             (b) 

Fig. 6: Figures showing the player detection using background 

subtraction model and our model. 

 

 
Fig. 7: Sample frames depicting Kalman filter player tracking. 

 

3. Improvements Using Kalman filter 

Figure 7 shows the several cropped frames of tracking of 

a single player. Each frame is numbered and the pink box 

represents the actual position of the player. The blue box is 

the prediction made by our Kalman filter. The blue box is 

corrected using the correct location of the bounding 

box(obtained from our ML model). After frame number 16 

the Kalman filter is no longer corrected and the blue box 

shown is only from the Kalman predictions. Now the 

Kalman filter can now be corrected using the ML prediction 

model every few frames and hence the predictions also 

become accurate. We have found that if we do not correct 

the filter and the player makes an abrupt movement then the 

filter will give inaccurate results. After testing for several 

frame lengths we found that if we correct the filter every 5 

frames and predict the location in between we get good 

accurate tracking results. Hence we can improve the speed 

of simply using a Machine Learning by 5-fold as that 

detection frames will only be required to be found every 5 

frames. 
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4. Comparison to Mean Shift Tracking 

Figure 8 shows a comparative study of tracking error 

based on the ground truth provided by the football dataset. 

We compared the proposed model Architecture to the Mean 

shift tracking Algorithm to show the error with respect to 

time. 

 
 Fig. 8: Error comparison between mean shift model and our 

model architecture to the Mean shift tracking Algorithm to show 

the error with respect to time. 

 

The error is calculated as 

 

 𝐸 =  ∆𝑥2 + ∆𝑦2 

 

(3) 

As we can observe our model does significantly better 

than a standard mean shift tracker. At most points our model 

finds the player more accurately. Initially the mean shift 

tracker also tracks the player accurately in the beginning. 

However as we can see towards the end it starts to create 

large error losses. This is because in fact the meanshift 

tracker loses track of the player and starts to track the grass 

behind him and remains stationary for a certain time. 

During this time the player moves away the distance 

between them increases. 

 

VI. CONCLUSION 

  

In this paper, we have developed a simple and effective 

model with low overhead which provides accurate results 

to track players in broadcast sports. We demonstrated the 

potential of machine learning and computer vision to track 

players in robust situations, such as those of evening 

matches, occluded situations, and even fast moving players 

with highly dynamic positions. Some real world 

applications of this paper could be to provide statistical 

information that could be valuable to sports training that 

effectively identify player’s strengths and weaknesses. 

Another application could be track players in live broadcast 

sports videos and give accurate and live information 

regarding the players just by using the video feed. This is 

only a tip of the iceberg and there is a lot of scope for 

applying machine vision algorithms for sports analytics and 

it is an emerging field. 
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