
Journal of Multimedia Information System VOL. 5, NO. 4, December. 2018 (pp. 257-264): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2018.5.4.257

257

I. INTRODUCTION

 Information regarding sports videos has always been

coveted. Due to the nature of sports and the sheer following

behind it the popularity of statistical analysis of sports

videos is highly desired. A need for a tracker of players that

can work on several sports and robust to handle different

situations such as occluded players, low-lit conditions and

to be able to handle fast paced sports with several awkward

positions of players is that might even work in a live

scenario (broadcast sports such as the NBA or FIFA) is

extremely in demand. This paper is an attempt to solve this

issue by providing an architecture by which one could

create such an efficient tracker that could track players in

the live scenario and also be robust in nature to handle all

the aforementioned situations. A simple yet moderately

effective approach already existing was to identify the

background of the field and use background subtraction to

track the players by calculating the absolute difference,

applying erosion and dilution and obtaining the contours.

Such a system works when the object is singular with a

clear background. However our situation is much more

difficult. Issues arose when players overlapped amongst

each other and many false positives were detected. Also

such a tracker could not applied to situations where the

whole court was not in view: such as the NBA basketball

videos. However, this tracker also fails to track broadcast

sports. The next attempt was to use a Meanshift tracker [4]

to track players in the our sports videos, but this attempt

was partially successful. The Meanshift Tracker is fast and

works well, however when players get occluded, or when

similar colors in the background appear the tracker fails to

identify the next position. Hence, we need a tracker that

could predict the next location and can handle occluded

situations. Also this tracker cannot identify players in a

broadcast scenario. Of note, certain sports videos such as

tennis and badminton were tracked using this method with

accurate results. This is because the number of players in

these sports are 2 players and they rarely get occluded.

Therefore we identified certain challenges: The first

challenge was to be able to track players in a broadcast

scenario. We used a Convolutional Neural Network by

feeding it images of court view shots and non-court view

shots such as advertisements, etc. The second issue was

detecting the players even in occluded conditions with a

high accuracy. We use machine learning pre-trained models

that can detect humans that has been trained on extremely

large datasets and provide accurate results for low-

resolution images seemed like a way to go. Such models are

available for the public domain. The final issue was to be

II. RELATED WORK

Object Detection and Tracking is a vast area and many

strategies and methodologies are tried to achieve results. In

order to track players several papers have defined efficient

Tracking Players in Broadcast Sports

Kandregula Manikanta Sudeep1, Voddapally Amarnath1, Angoth Rahul Pamaar1, Kanjar De1,

Rajkumar Saini1*, Partha Pratim Roy1

Abstract
Over the years application of computer vision techniques in sports videos for analysis have garnered interest among researchers. Videos

of sports games like basketball, football are available in plenty due to heavy popularity and coverage. The goal of the researchers is to extract

information from sports videos for analytics which requires the tracking of the players. In this paper, we explore use of deep learning networks

for player spotting and propose an algorithm for tracking using Kalman filters. We also propose an algorithm for finding distance covered by

players. Experiments on sports video datasets have shown promising results when compared with standard techniques like mean shift filters.

Key Words: Convolutional Neural Network, Kalman Filter, Object Tracking.

Manuscript received July 26, 2018; Revised August 24, 2018; Accepted August 28, 2018. (ID No. JMIS-2018-0038)

Corresponding Author (*): Rajkumar Saini, IIT Roorkee, India, E-mail. rajkumarsaini.rs@gmail.com
1IIT Roorkee, India, sudeepkandregula@gmail.com , amarnath1031@gmail.com , rahulpamaar@gmail.com,

kanjar.cspdf2017@iitr.ac.in , rajkumarsaini.rs@gmail.com , proy.fcs@iitr.ac.in

mailto:rajkumarsaini.rs@gmail.com
mailto:sudeepkandregula@gmail.com
mailto:amarnath1031@gmail.com
mailto:rahulpamaar@gmail.com
mailto:kanjar.cspdf2017@iitr.ac.in
mailto:rajkumarsaini.rs@gmail.com
mailto:proy.fcs@iitr.ac.in

Tracking Players in Broadcast Sports

258

tracking algorithms and methodologies such as the KCF

Tracker [3], and the Mean-shift tracker[4]. The KCF

Tracker is a kernel algorithm and the mean-shift algorithm

is used for Mean-Shift Tracker. These tracker efficiently

track objects, tracking them at high fps, however they fail

tracking when players are small in size with respect to the

overall region or moving at relatively high speeds. A recent

approach that is interesting lead to object detection in

complex environments using background subtraction for

fast tracking[8].However, important to note is all these

trackers lack a global view of the scene and thus usually fail

to track players when occlusion occurs. Kalman Filter was

also used to track objects even in occluded situations at high

speeds with predictive capabilities. Our papers borrows

ideas from [9] and the ability of the Kalman filter to predict

new positions based on past information. Tracking objects

in this way alone is not sufficient for our use-case because

of the aforementioned problems. Therefore a need arose to

find a different method to detect players. With the rise of

neural nets in recent times we employ a pre-trained model

derived from [5] that uses resnet [2] and faster r-cnn [13] to

deliver incredible results in the field of image object

identification. We use this information to create model

architecture that can dynamically detect and track players

in most conditions. Statistical analysis of players is done

with simple euclidean geometry. Our proposed model

incorporates these ideas into a single flow and tries a

different approach to track players and map them to a top-

down view for statistical analysis. Meanshift Tracking is

done by using the mean-shift algorithm. The meanshift

algorithm is an efficient approach to tracking objects whose

appearance is defined by histograms. The meanshift

algorithm moves our window to the new location with

maximum density. A confidence map is created in the image

and based on the color histogram of our tracking object that

was obtained in the previous image, we use mean shift to

find the peak of the confidence map near the region of the

object’s old position. The peak will point us to the new

location and hence we track this mean. This can be used to

track not only color space but any system that contains

histograms.

The Kalman filter model assumes that the state of a system

at a time 𝑡 evolved from the prior state at time 𝑡 − 1

according to the equation

 𝒙𝒕 = 𝑭𝒕𝒙𝒕−𝟏 + 𝑩𝒕𝒖𝒕 + 𝒘𝒕 (1)

where 𝑥𝑡 is the state vector containing the terms of interest

for the system (e.g., position, velocity, heading) at time 𝑡,

𝐹𝑡 is the state transition matrix which applies the effect of

each system state parameter at time 𝑡 − 1 on the system

state at time 𝑡 (e.g., the position and velocity at time 𝑡 −

1 both affect the position at time 𝑡). 𝑢𝑡 is the vector

containing any control inputs (steering angle, throttle

setting, braking force). 𝐵𝑡 is the control input matrix

which applies the effect of each control input parameter in

the vector 𝑢𝑡 on the state vector. 𝑤𝑡 is the vector

containing the process noise terms for each parameter in the

state vector. The process noise is assumed to be drawn from

a zero mean multivariate normal distribution given a

covariance matrix. Measurements of the system can also be

performed, according to the model

 𝒛𝒕 = 𝑯𝒕𝒙𝒕 + 𝒗𝒕 (2)

where 𝑧𝑡 is the vector of measurements, 𝐻𝑡 is the

transformation matrix that maps the state vector parameters

into the measurement domain, 𝑣𝑡 is the vector containing

the measurement noise terms for each observation in the

measurement vector. This gives us the prediction of the new

state which can be used to give the next most likely position

of the player. Any two images of the same planar surface in

space are related by a homography. Homography can be

used to map different planar structures amongst each other

if we assume them to be the same or similar. Once camera

rotation and translation have been extracted from an

estimated homography matrix, this information may be

used for navigation or even map points from one

perspective to another.

1. Convolutional Neural Networks

The four main building blocks to define a basic

convolutional neural network are Input Layer,

Convolutional Layer, Pooling Layer, Output Layer. The

input layer consists of the image as an n x n dimensional

array. The convolution layer is the main building block of a

convolutional neural network. The convolution layer

comprises of a set of independent filters. Each filter is

independently convolved with the image to obtain the

corresponding feature maps. The pooling layers function is

to progressively reduce the spatial size of the representation

to reduce the amount of parameters and computation in the

network. Pooling layer operates on each feature map

independently. The output layer is fully connected to the

previous layer and predicts the output of the system. The

Network is trained with images and the weights and biases

of the connections are updated by using backpropagation.

III. PROPOSED MODEL ARCHITECTURE

In order to achieve our desired results we have come up

with a model architecture to track players in broadcast

sports as shown in Figure 1.

Journal of Multimedia Information System VOL. 5, NO. 4, December. 2018 (pp. 257-264): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2018.5.4.257

259

Fig. 1. Model Architecture

For each frame we first send it through the shot-segmenter

module in order to determine whether the frame is a view

of the game or some other image. If negative we discard the

frame and take the next frame. We want to only display

game-view images in our resultant video and hence we

proceed only if the result is positive. We then send the frame

through a pre-trained object detection neural network to

identify the bounding boxes of players. Once we get the

bounding boxes of the players we track the players using an

appropriate tracker to keep track of the player and predict

his next position [5]. After this we map the player’s location

to the corresponding point on the homographic top view of

the court or field. Then based on the dimensions of the field

we can calculate the distance travelled by the player.

1. Shot Segmentation

During certain game videos such as the NBA videos, the

videos have advertisements, close up views of players and

other frames in the video which are undesirable. In order to

eliminate such shots and leave only the game video

containing the players on the court we have developed a

convolutional neural network to classify whether a given

image is court-view or not. The CNN has 6 layers and takes

(64,128) size images using the Adam optimizer. Actual size

images are 854 x 480 pixels in dimensions and so we resize

our image to 64 x 128 pixels and send it into the CNN.

2. Detecting Players

In order to detect the player locations we need to be able

to identify humans in pictures. To do this we use a pre-

trained model to identify bounding boxes of human-like

figures in our frame. The way we achieve this is two-fold.

First our image is of very high resolution: 4450 x 2000

pixels. The pre-trained model does not give accurate results

as it scales the images to 300x300 pixels. Therefore we take

our image and segment it into many images (around 150)

and send it to the model to identify the players. The second

step is to eliminate overlapping images and false positives.

This can be done by comparing area of the bounding box,

ratio of the bounding box and distance between the

bounding boxes and the rgb histograms of the boxes. The

players are then successfully identified. The last step in this

process is to select the model for detecting player locations.

3. Team Classification

After detecting the players we need to identify the teams

in which they belong to. In order to identify which team the

player belongs to we use RGB Histograms. Whatever the

game we take instances of players of both teams. And then

we use those pre-computed RGB Histograms of players and

compare them to the histogram of our current bounding box.

The closest result is given as the corresponding team [10].

As the colors are usually far apart this usually gives high

accuracy. If the area has large differences to both the pre-

computed histograms then we can even discard this

bounding box before proceeding. This occurs for example

if the referee is identified or if a player in the crowd is

identified.

4. Tracking Players

For tracking players we use a two-step process. Using the

pre-trained model to identify the locations of the players for

every frame takes too long for tracking and hence the need

arises to use a tracker. In order to predict the next location

of the player we use Kalman Filter based on the last known

location and last known velocity [6]. After a set number of

fixed frames we use the ML model to find the correct

current location and update our tracker accordingly.

Therefore the tracker tracks the player for some time and is

fast and after the predetermined fixed number of frames, the

tracker is corrected based on the correct location of the

player. The proposed algorithm for detecting players is

given in Algorithm 1.

Algorithm 1 Player Tracking

1 𝐟𝐫𝐚𝐦𝐞_𝐜𝐨𝐮𝐧𝐭 ← number of frames to wait before
correcting Kalman filter

2 while 𝒕𝒓𝒖𝒆 do

3 𝒊 ← 𝟎

4 𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈_𝒃𝒐𝒙𝒆𝒔 ← bounding boxes of all
currently tracked players

5 if 𝒊 > 𝒇𝒓𝒂𝒎𝒆_𝒄𝒐𝒖𝒏𝒕 then

6 𝒏𝒆𝒘_𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒃𝒐𝒙𝒆𝒔 ←find bounding boxes
using pre-trained model

7 for each 𝒃𝒐𝒙 𝝐 𝒏𝒆𝒘_𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒃𝒐𝒙𝒆𝒔 do

8
𝒎𝒂𝒕𝒄𝒉𝑩𝒐𝒙(𝒏𝒆𝒘_𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒃𝒐𝒙𝒆𝒔, 𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈_𝒃𝒐𝒙𝒆𝒔)

9 correct the corresponding tracker’s Kalman filter
state

10 end for

11 𝒊 ← 𝟎

12 end if

13 𝒊 ← 𝒊 + 𝟏

Tracking Players in Broadcast Sports

260

14 for each 𝒃𝒐𝒙 𝝐 𝒃𝒐𝒖𝒏𝒅𝒊𝒏𝒈_𝒃𝒐𝒙𝒆𝒔 do

15 𝒅𝒓𝒂𝒘(𝒃𝒐𝒙)

16 end for

17 display frame on screen

18 end while

5. Matching Players

The 𝑚𝑎𝑡𝑐ℎ𝐵𝑜𝑥 function arises as a need to match new

and old player locations. Essentially, in order to update the

tracker using the correct location we need to know which

player location (obtained from the ML model) corresponds

to which player (from the tracker). This is done using our

matching algorithm which is essentially to find the nearest

box to the given box and match it. Our matching algorithm

takes all the bounding boxes and checks within a pixel

radius for bounding boxes (compares only new bounding

boxes obtained from the ML Model). This pixel radius is

defined as product of the number of frames and a constant

in order to map the bounding box within an appropriate

radius. If there are multiple bounding boxes near that

corresponding player we match it with the one with nearest

distance. After the matching of one box is complete we

eliminate that box from the list so as to avoid repetitions.

Two cases arise in this situation. If the number of new boxes

are equal to the number of previous boxes then the players

are matches as a bijections. However, if the number of new

boxes are more than the number of previously identified

boxes then the extra boxes are added to the list of tracked

players (assuming the boxes represent players based on

their histograms). If the number of new boxes are less than

the number of previous boxes we pass on the missing box

as is. This is because there may be a future frame where the

player is identified again and then this will help in resuming

his movement and getting consistent statistic results.

6. Top View Conversion

After tracking we need to map each player location to the

top down view of the field of the corresponding sport. In

Figure 2a we have the panoramic football field containing

the players. In Figure 2b we have the top down view of a

football field. In order to map the locations we compute the

homography between the two images by mapping points

around the boundary of the two images. However as the first

frame is a panoramic view this poses a challenge. We used

a unique method to calculate the homography.

 (a) (b)

Fig. 2. The background image that has to be mapped to the top

view of the football field.

We partitioned the image into 8 different areas each

represented by a color as shown in Figure 3. Each of these

individual parts are mapped to the corresponding area in the

topview image. We calculate the individual homography

transition matrices for all 8 divisions and assign it to the

corresponding color. Now in order to map the player we

find the foot position of the player and find which color

region this position belongs to by identifying the pixel color

of the corresponding pixel in Figure 3. Hence we find the

corresponding homography matrix and transform the point

to our top view image.

Fig. 3. The 8 partitions divided into unique colors that represents

the 8 different homographies.

7. Distance and Trails

Finally, we calculate the distance travelled by the players

and the trail of the player on the top-view of the field. The

distance is stored as a separate variable for each player.

Between each frame we find the player locations calculate

the Euclidean distance between them in pixels. We then use

the aspect ratio of the top down view with respect to the size

of an actual football field in order to calculate the distance

travelled by each player by multiplying this constant with

the distance calculated. In order to find the trail of the player

we just define a number of frames where we store the

players previous frame location and plot all of those points

on the top-view image. After we exceed this limit we delete

the oldest known location and append the newest.

Algorithm 2 Finding the Actual Distance moved by
the player

1 𝑷𝑰𝑿𝑬𝑳𝑺_𝑻𝑶_𝑴𝑬𝑻𝑬𝑹𝑺 ← ratio of top-view
image to stadium

2 𝒑𝒓𝒆𝒗 ← previous location of player

3 𝒄𝒖𝒓 ← current location of player

4 procedure 𝑭𝒊𝒏𝒅𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒑𝒓𝒆𝒗, 𝒄𝒖𝒓)

5 𝒅𝒊𝒇𝒇𝑿 ← 𝒂𝒃𝒔(𝒄𝒖𝒓[𝒙] − 𝒑𝒓𝒆𝒗[𝒙])

6 𝒅𝒊𝒇𝒇𝒀 ← 𝒂𝒃𝒔(𝒄𝒖𝒓[𝒚] − 𝒑𝒓𝒆𝒗[𝒚])

7 𝒑𝒊𝒙𝒆𝒍_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 ← √𝒅𝒊𝒇𝑿𝟐 + 𝒅𝒊𝒇 𝒀𝟐

8 𝒓𝒆𝒕𝒖𝒓𝒏 𝑷𝑰𝑿𝑬𝑳𝑺_𝑻𝑶_𝑴𝑬𝑻𝑬𝑹𝑺
∗ 𝒑𝒊𝒙𝒆𝒍_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

9 end procedure

IV. EXPERIMENTS

Journal of Multimedia Information System VOL. 5, NO. 4, December. 2018 (pp. 257-264): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2018.5.4.257

261

In this section, we present the dataset information and the

experimental details used in this work.

1. Datasets and Ground Truths

The dataset consists of 1000 video clips of NHL games.

Each video clip consists of 50 frames. The resolution of

each frame is 720 × 576. The video frames are labeled into

two classes i.e. fight and non-fight. Each video clip is

further divided into two consecutive parts consisting of 25

frames each to increase the number of training samples. 70%

of the total data is used to train the networks, 10% for

validation and the left 20% is used for testing the trained

models. The training and validation clips are randomly

picked from the dataset. The data is randomly shuffled after

each epoch for robust training and testing.

2. Datasets

In this section, we discuss the different datasets we used

to implement and test the proposed model architecture.

Shot-Segmenter Dataset In order to train our shot

segmenter we created our own dataset from 5 full-length

NBA videos. Each video was approximately 90 minutes

long. In order to get more diversified training data we took

only a single frame for every five frames. We got around

12000 frames per video and around 3000 negative images

and 9000 positive image. We discarded 6000 random

positive images as we wanted equal number of positive and

negative matches for good results. Therefore, after all 5

videos we ended up with a total of 15000 positive image

results and 15000 negative image results. This was fed into

a Convolutional Neural Network to create our shot-

segmenter. Football Dataset Here we required a panoramic

view of the entire football field. This was obtained by using

the dataset provided by [12]. They had 3 stable wide angle

digital cameras setup on a football field with an actual

match. The total video available is around 40 minutes of

resolution 4450 x 2000 pixels. The video also contains the

actual positions of the players in reference to the figure

shown below. The soccer pitch is 105 x 68 m wide and valid

in-field values for 𝑥 and 𝑦 are in the range of 0 ≤ 𝑥 ≤

105 and 0 ≤ 𝑦 ≤ 68 where 𝑥, 𝑦 represent player

positions. Other Datasets, Other live videos were full length

videos of various sports found on the internet. As our

system was designed to track even in broadcast sports by

identifying the court frames we have used direct video feed

from multiple archived games. For example, for basketball

tracking we have used Utah Jazz vs Oklahoma City

Thunder match found by the YouTube research dataset

provided by Google [1].

3. Model Architecture Implementation

In this section we discuss the implementations of various

parts of our model architecture. Shot-Segmenter We trained

our shot-segmenter model for 50 epochs using adam-

optimizer with a learning rate of 0.0002. Then we take full

length basketball videos and feed it into our shot-segmenter

to get isolated court shots. After this video is just the same

as the panoramic video of football. Then we send it through

our model architecture with corresponding team classifiers

and top-view images. Pre-Trained Models In order to detect

the player locations we are using a pre-trained model.

Several models are present with varying ranges of accuracy

and speed. We have tested the following models [5][2][13].

We have chosen the Faster RCNN model due to its balance

of accuracy and speed. Tracking Players We sent our

panoramic video from our football dataset and sent it

through our model architecture in order to track the players.

We finally get the player positions of our tracker on the

reference field after applying the homographic

transformation. This value is compared to the actual

positions of the players provided by the football dataset.

V. RESULTS

In this section, we present the results obtained by

applying our method on National Hockey League (NHL)

dataset.

We show a comparative study between various methods

of tracking the player. The methods used are Background

Subtractor to identify Contours, Mean-Shift Tracking and

Proposed Model Architecture.

1 Qualitative Results

After sending our video into our model architecture

Figure 4a shows the detection of the bounding boxes of the

players. After this we classify the teams based on their

histograms to sort them into the two different teams.

Boundary boxes whose ratios are inappropriate are

eliminated and the Figure 4b shows the classification of the

players. Black Boxes indicate a player of the black team.

White Boxes indicate a player of the white team. Now

we qualitatively compare the detection of players using

background subtraction and contour drawing by erosion

and dilation and through our model architecture. Figure 5a

shows the detection using the background subtractor

method. Players that are slightly occluded or interacting

become shown as one single player which is incorrect and

inaccurate. However our model correctly identifies players

that are close to each other even though they are extremely

small as shown in Figure 5b.

Tracking Players in Broadcast Sports

262

(a)

(b)

Fig. 4: Figures showing detection and team classification of

players using our mode

(a)

 (b)
Fig. 5: Figures showing the player detection using background

subtraction model and our model.

2. Quantitative Results

Figure 6 shows the results of the shot segmenter in the

proposed model. Figure 6a depicts a positive match of the

court and Figure 6b shows a negative match where a close

up of a player is found. The accuracy of our shot segmenter

is 96.4%. As it is an implementation of the AlexNet

architecture [7] it is quite fast and can be used to show the

live segmentation of shots in broadcast sports.

 (a) (b)

Fig. 6: Figures showing the player detection using background

subtraction model and our model.

Fig. 7: Sample frames depicting Kalman filter player tracking.

3. Improvements Using Kalman filter

Figure 7 shows the several cropped frames of tracking of

a single player. Each frame is numbered and the pink box

represents the actual position of the player. The blue box is

the prediction made by our Kalman filter. The blue box is

corrected using the correct location of the bounding

box(obtained from our ML model). After frame number 16

the Kalman filter is no longer corrected and the blue box

shown is only from the Kalman predictions. Now the

Kalman filter can now be corrected using the ML prediction

model every few frames and hence the predictions also

become accurate. We have found that if we do not correct

the filter and the player makes an abrupt movement then the

filter will give inaccurate results. After testing for several

frame lengths we found that if we correct the filter every 5

frames and predict the location in between we get good

accurate tracking results. Hence we can improve the speed

of simply using a Machine Learning by 5-fold as that

detection frames will only be required to be found every 5

frames.

Journal of Multimedia Information System VOL. 5, NO. 4, December. 2018 (pp. 257-264): ISSN 2383-7632(Online)

http://dx.doi.org/10.9717/JMIS.2018.5.4.257

263

4. Comparison to Mean Shift Tracking

Figure 8 shows a comparative study of tracking error

based on the ground truth provided by the football dataset.

We compared the proposed model Architecture to the Mean

shift tracking Algorithm to show the error with respect to

time.

 Fig. 8: Error comparison between mean shift model and our

model architecture to the Mean shift tracking Algorithm to show

the error with respect to time.

The error is calculated as

 𝐸 = ∆𝑥2 + ∆𝑦2

(3)

As we can observe our model does significantly better

than a standard mean shift tracker. At most points our model

finds the player more accurately. Initially the mean shift

tracker also tracks the player accurately in the beginning.

However as we can see towards the end it starts to create

large error losses. This is because in fact the meanshift

tracker loses track of the player and starts to track the grass

behind him and remains stationary for a certain time.

During this time the player moves away the distance

between them increases.

VI. CONCLUSION

In this paper, we have developed a simple and effective

model with low overhead which provides accurate results

to track players in broadcast sports. We demonstrated the

potential of machine learning and computer vision to track

players in robust situations, such as those of evening

matches, occluded situations, and even fast moving players

with highly dynamic positions. Some real world

applications of this paper could be to provide statistical

information that could be valuable to sports training that

effectively identify player’s strengths and weaknesses.

Another application could be track players in live broadcast

sports videos and give accurate and live information

regarding the players just by using the video feed. This is

only a tip of the iceberg and there is a lot of scope for

applying machine vision algorithms for sports analytics and

it is an emerging field.

REFERENCES

[1] YouTube-8M: A Large and Diverse Labeled Video

Dataset for Video Understanding Research.

https://research.google.com/youtube8m/explore.html

[2] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual

learning for image recognition, 2015.

[3] Henriques, J.F., Caseiro, R., Martins, P., Batista, J.:

High-speed tracking with kernelized correlation filters.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2015.

[4] Hu, M.C., Chang, M.H., Wu, J.L., Chi, L.: Robust

camera calibration and player tracking in broadcast

basketball video. IEEE Transactions on Multimedia,

2011.

[5] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,

Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,

S., Murphy, K.: Speed/accuracy trade-offs for modern

convolutional object detectors, 2016

[6] Jeong, J.M., Yoon, T.S., Park, J.B.: Kalman filter based

multiple objects detection-tracking algorithm robust to

occlusion. In: 2014 Proceedings of the SICE Annual

Conference (SICE), 2014.

[7] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet

classification with deep convolutional neural networks.

In: Proceedings of the 25th International Conference on

Neural Information Processing Systems – Volume 1. pp.

1097–1105. NIPS’12, Curran Associates Inc., USA

2012,

http://dl.acm.org/citation.cfm?id=2999134.2999257

[8] Kumar, S., Yadav, J.S.: Video object extraction and its

tracking using background subtraction in complex

environments. Perspectives in Science, 2016.

[9] Li, X., Wang, K., Wang, W., Li, Y.: A multiple object

tracking method using kalman filter. In: The 2010 IEEE

International Conference on Information and

Automation. IEEE (jun 2010).

ttps://doi.org/10.1109/icinfa.2010.5512258,

https://doi.org/10.1109/icinfa.2010.5512258

[10] Mazzeo, P.L., Giove, L., Moramarco, G.M., Spagnolo,

P., Leo, M.: HSV and RGB color histograms comparing

for objects tracking among non overlapping FOVs,

using CBTF. In: 2011 8th IEEE International

Conference on Advanced Video and Signal Based

Surveillance (AVSS), 2011.

Tracking Players in Broadcast Sports

264

[11] Pei, Y., Biswas, S., Fussell, D.S., Pingali, K.: An

elementary introduction to kalman filtering, 2017.

[12] Pettersen, S.A., Johansen, D., Johansen, H., Berg-

Johansen, V., Gaddam, V.R., Mortensen, A., Langseth,

R., Griwodz, C., Stensland, H.K., Halvorsen, P.: Soccer

video and player position dataset. In: Proceedings of the

5th ACM Multimedia Systems Conference. pp. 18–23.

ACM, 2014.

[13] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn:

Towards realtime object detection with region proposal

networks, 2015.

Authors

Kandregula Manikanta Sudeep has received his BTech degree

in computer science and engineering from IIT Roorkee, India in

2018. He has research interest in machine learning, computer

vision, and pattern recognition.

Voddapally Amarnath has received his BTech degree in

computer science and engineering from IIT Roorkee, India in

2018. He has research interest in machine learning, computer

vision, and pattern recognition.

Angoth Rahul Pamaar has received his BTech degree in

computer science and engineering from IIT Roorkee, India in

2018. He has research interest in machine learning, computer

vision, and pattern recognition.

Kanjar De is a postdoctoral researcher in the

department of computer science and

engineering at IIT Roorkee, India. His

research interests are image enhancement, and

machine learning.

Rajkumar Saini is a research scholar in the

department of computer science and

engineering at IIT Roorkee, India. His

research interests are computer vision, and

machine learning.

Partha Pratim Roy received his Ph.D.

degree in computer sciencein 2010 from

Universitat Autònoma de Barcelona,

Barcelona (Spain). He worked as

postdoctoral research fellow in the Computer

Science Laboratory (LI, RFAI group), France

(2010-2012) and in Synchromedia Lab,

Canada (2013). He qualified for the

"Assistant Professor" position in France in 2012. Presently, Dr.

Roy is working as Assistant Professor at Dept. of Computer

Science and Engineering, Indian Institute of Technology (IIT),

Roorkee. His main research area is Pattern recognition and

machine learning.

