• 제목/요약/키워드: Kalman

검색결과 2,361건 처리시간 0.027초

Kalman Filter Based Optimal Controllers in Free Space Optics Communication

  • Li, Zhaokun;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.368-380
    • /
    • 2016
  • There is no doubt that adaptive optics (AO) is the most promising method to compensate wavefront disturbance in free space optics communication (FSO). In order to improve the performance of the AO system described by discrete-time linear system model with time-delay and implicit phase turbulent model, new controllers based on a Kalman filter and its extensions are proposed. Based on the standard Kalman filter, we propose a fading memory filter to deal with the ruleless strong interference; sequential and U-D filters are applied to reduce implementation complexity for the embedded controllers. Theoretical analysis and the numerical simulations show that the proposed fading memory filter can upgrade the performance for AO systems in consideration of the unforeseen strong pulse interference, and the sequential and U-D filters perform well compared with a Kalman filter.

Stability Analysis of Kalman Filter by Orthonormalized Compressed Measurement

  • Hyung Keun Lee;Jang Gyu Lee
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.97-107
    • /
    • 2002
  • In this paper, we propose the concept of orthonormalized compressed measurement for the stability analysis of discrete linear time-varying Kalman filters. Unlike previous studies that deal with the homogeneous portion of Kalman filters, the proposed Lyapunov method directly deals with the stochastically-driven system. The orthonorrmalized compressed measurement provides information on the a priori state estimate of the Kalman filter at the k-th step that is propagated from the a posteriori state estimate at the previous block of time. Since the complex multiple-step propagations of a candidate Lyapunov function with process and measurement noises can be simplified to a one-step Lyapunov propagation by the orthonormalized compressed measurement, a stochastic radius of attraction can be derived that would be impractically difficult to obtain by the conventional multiple-step Lyapunov method.

  • PDF

Kalman Filtering 이론에 의한 하천 유출 안전관리에 관한 연구 (A Study on the Safety Management of Streamflows by the Kalman Filtering Theory)

  • 박종권;박종구;이영섭
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.122-127
    • /
    • 1996
  • The purpose of this study has been studied and investigated to prediction algorithms of the Kalman Filtering theory which are based on the state-vector description, including system identification, model structure determination, parameter estimation. And the prediction algorithms applied of rainfall-runoff process, has been worked out. The analysis of runoff process and runoff prediction algorithms of the river-basin established, for the verification of prediction algorithms by the Kalman Filtering theory, the observed historical data of the hourly rainfall and streamflows were used for the algorithms. In consisted of the above, Kalman Filtering rainfall-runoff model applied and analysised to Wi-Stream basin in Nak-dong River(Basin area : $472.53km^2$).

  • PDF

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권3호
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

확장 칼만 필터를 이용한 비콘의 거리 측정에 관한 연구 (Study on Distance Measurement of Beacon Using Extended Kalman Filter)

  • 장규호
    • 디지털산업정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, inaccurate RSSI values of beacons are corrected using extended Kalman filter. For the experiment, the beacon was manufactured using Arduino Uno board and HM-10 Bluetooth module. RSSI values according to the distance between beacon and the viewer were measured at intervals of 1m, 1.5m, 2m, 2.5m, 3m, 3.5m, 4m, 4.5m, and 5m. To remove the irregular signal pattern of the beacon, the extended Kalman filter was applied to obtain the average and standard deviation of the actual distance and the measured distance, and it was confirmed that more than 76.6% of the irregular signal pattern was removed after using the extended Kalman filter.In addition, through the smartphone app, it was confirmed that the distance accuracy between the beacon and the measurer was less than the actual distance and the measured distance within 2m, and the standard deviation was small.

Kalman-Filter를 이용한 음성트래픽 예측 및 회선 교환 격자 구조망 성능 평가 (Voice Traffic Estimation using Kalman-filtering and Performance Evaluation of a Circuit Switched Network with Grid Topology)

  • 문경덕;이정규
    • 한국통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.452-459
    • /
    • 1992
  • 본 논문에서는 kalman-filter 방법을 이용하여 향후 수년간의 음성 트래픽 양을 예측하고, 이 값들을 이용하여 격자 구조로 구성된 회선 교환망에서의 성능을 평가하였다. Kalman-filter 방법은 특적 오차와 모델링 오차를 고려해서 시스템의 상태를 예측하기 때문에 다른 예측 방법들보다 정확하게 시스템의 상태를 예측할 수 있다. 격자 구조 회선 교환망은 우회 경로가 존재하므로 노드들이 다른 구조로 구성되어 있는 통신망보다 높은 신뢰도를 가진다. 본 논문에서는 향 후 수 년간의 예측된 음성 통화량을 이용하여, 회선 교환망 성능 평각의 근간이 되는 호차단(call blocking)확률을 구했다.

  • PDF

궤도결정을 위한 비선형 필터 (Nonlinear Filter for Orbit Determination)

  • 윤장호
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.21-28
    • /
    • 2016
  • Orbit determination problems have been interest of many researchers for long time. Due to the high nonlinearity of the equation of motion and the measurement model, it is necessary to linearize the both equations. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the extended Kalman filter update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the extended Kalman filter update mechanism. This filter based on the DQMOM and the EKF update is applied to the orbit determination problem with appropriate modification to mitigate the filter smugness. Unlike the extended Kalman filter, the hybrid filter based on the DQMOM and the EKF update does not require the burdensome evaluation of the Jacobian matrix and Gaussian assumption for the system, and can still provide more accurate estimations of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the hybrid filter based on the DQMOM and the EKF update make it a promising alternative to the extended Kalman filter for orbit estimation problems.

태양광 발전 시스템의 노이즈 감소와 상태추정을 위한 비선형 제어기 설계 (Nonlinear Controller Design for Noise Reduction and State Estimation in the Photovoltaic Power Generation System)

  • 김일송
    • 전력전자학회논문지
    • /
    • 제14권4호
    • /
    • pp.261-267
    • /
    • 2009
  • 최대전력점 추적기는 태양광 발전시스템의 대표적인 기능이다. 최대 전력점을 추종하기 위해서는 태양전지의 전압과 전류의 측정을 필요로 한다. 만약 측정 신호에 노이즈가 포함되어 있으면 발생되는 전력이 감소되어 태양광 발전의 효율이 감소하게 된다. 노이즈가 포함된 신호에 확장 칼만 필터 이론을 적용하여 최적의 추정된 신호를 얻어 낼 수 있다. 칼만 필터는 랜덤 노이즈가 포함된 신호에서 최적의 신호를 얻어내는데 사용된다. 또한 칼만 필터의 적용결과로 인덕터 전류와 같은 측정하지 않는 신호도 센서리스 추정이 가능하다. 본 논문에서는 시스템 모델링 방법과 확장 칼만 필터 설계 방법이 소개된다. 실험 결과로서 제안된 제어기의 성능을 확인하였다.

자율주행 차량 제어를 위한 다중 주기 센서 기반의 상보 필터 동기 융합 (Synchronous Interfusion of the Compensatory Filters Based on Multi-rate Sensors for the Control of the Autonomous Vehicle)

  • 박정현;이광희;이철희
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents about multi-rate sensors' synchronization and filter fusion via a sigmoid function of the Kalman filter. To synchronize multi-rate sensors, the estimation states of the Kalman filter is modified. A specific matrix that makes the filter choose sensor values only updated is multiplied to measurement matrix. For the filter that has weak points on some criteria, filter fusion is suggested by using sigmoid function. Modified kalman filter is tested with practical case. A sigmoid function was designed for the test and the performance of the modified function is estimated with respect to conventional Kalman filter. Unscented Kalman filter is used to the base filter of the suggested filter because of its stability.

Survey of nonlinear state estimation in aerospace systems with Gaussian priors

  • Coelho, Milca F.;Bousson, Kouamana;Ahmed, Kawser
    • Advances in aircraft and spacecraft science
    • /
    • 제7권6호
    • /
    • pp.495-516
    • /
    • 2020
  • Nonlinear state estimation is a desirable and required technique for many situations in engineering (e.g., aircraft/spacecraft tracking, space situational awareness, collision warning, radar tracking, etc.). Due to high standards on performance in these applications, in the last few decades, there was an increasing demand for methods that are able to provide more accurate results. However, because of the mathematical complexity introduced by the nonlinearities of the models, the nonlinear state estimation uses techniques that, in practice, are not so well-established which, leads to sub-optimal results. It is important to take into account that each method will have advantages and limitations when facing specific environments. The main objective of this paper is to provide a comprehensive overview and interpretation of the most well-known methods for nonlinear state estimation with Gaussian priors. In particular, the Kalman filtering methods: EKF (Extended Kalman Filter), UKF (Unscented Kalman Filter), CKF (Cubature Kalman Filter) and EnKF (Ensemble Kalman Filter) with an aerospace perspective.