DOI QR코드

DOI QR Code

Survey of nonlinear state estimation in aerospace systems with Gaussian priors

  • Coelho, Milca F. (LAETA/UBI - AeroG, Laboratory of Avionics and Control, Department of Aerospace Sciences, University of Beira Interior) ;
  • Bousson, Kouamana (LAETA/UBI - AeroG, Laboratory of Avionics and Control, Department of Aerospace Sciences, University of Beira Interior) ;
  • Ahmed, Kawser (LAETA/UBI - AeroG, Laboratory of Avionics and Control, Department of Aerospace Sciences, University of Beira Interior)
  • Received : 2020.01.24
  • Accepted : 2020.06.07
  • Published : 2020.11.25

Abstract

Nonlinear state estimation is a desirable and required technique for many situations in engineering (e.g., aircraft/spacecraft tracking, space situational awareness, collision warning, radar tracking, etc.). Due to high standards on performance in these applications, in the last few decades, there was an increasing demand for methods that are able to provide more accurate results. However, because of the mathematical complexity introduced by the nonlinearities of the models, the nonlinear state estimation uses techniques that, in practice, are not so well-established which, leads to sub-optimal results. It is important to take into account that each method will have advantages and limitations when facing specific environments. The main objective of this paper is to provide a comprehensive overview and interpretation of the most well-known methods for nonlinear state estimation with Gaussian priors. In particular, the Kalman filtering methods: EKF (Extended Kalman Filter), UKF (Unscented Kalman Filter), CKF (Cubature Kalman Filter) and EnKF (Ensemble Kalman Filter) with an aerospace perspective.

Keywords

References

  1. Ahmed, N.U. (1998), Linear and Nonlinear Filtering for Scientists and Engineers, World Scientific Publishing Co. Pte. Ltd., Farrer Road, Singapore.
  2. Akhlaghi, S., Zhou, N. and Huang, Z. (2017), "Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation", Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, Illinois, U.S.A., July.
  3. Akin, B., Orguner, U. and Ersak, A. (2003), "State estimation of induction motor using unscented Kalman Filter", Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, Turkey, June.
  4. Arasaratnam, I. and Haykin, S. (2009a), "Cubature Kalman Filters", IEEE T. Automat. Contr., 54(6), 1254-1269. https://doi.org/10.1109/TAC.2009.2019800
  5. Arasaratnam, I. and Haykin, S. (2009b), "Cubature Kalman Filtering: A powerful tool for aerospace applications", Proceedings of the International Radar Conference, Bordeaux, France, October.
  6. Arasaratnam, I. and Haykin, S. (2010), "Cubature Kalman Filtering for continuous-discrete systems: Theory and simulations", IEEE T. Signal Process., 58(10), 4977-4993. https://doi.org/10.1109/TSP.2010.2056923.
  7. Ashrafifar, A. and Jegarkandi, M.F. (2020), "Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors", Adv. Aircraft Spacecraft Sci., 7(1), 1-17. https://doi.org/10.12989/aas.2020.7.1.001.
  8. Bar-Shalom, Y., Li, X.R. and Kirubarajan, T. (2001), Estimation with Applications to Tracking and Navigation, Wiley-Interscience, Jonh Wiley & Sons, Inc., New York, U.S.A.
  9. Bishop, R.H. and Antoulas, A.C. (1994), "Nonlinear approach to aircraft tracking problem", J. Guid. Control Dyn., 17(5), 1124-1130. https://doi.org/10.2514/3.21319.
  10. Chandra, K.P.B. and Gu, D.W. (2019), Nonlinear Filtering: Methods and Applications, Springer, Cham, Switzerland.
  11. Chowdhary, G. and Jategaonkar, R. (2010), "Aerodynamic parameter estimation from flight data applying extended and unscented Kalman Filter", Aerosp. Sci. Technol., 14(2), 106-117. https://doi.org/10.1016/j.ast.2009.10.003.
  12. Coelho, M. and Ahmed, K. (2017), "Survey of nonlinear state estimation based on Kalman Filtering", Proceedings of the ICEUBI - International Congress on Engineering, Covilha, Portugal, December.
  13. Coelho, M. and Bousson, K. (2016), "Nonlinear estimation of orbital trajectories from radar measurements", Proceedings of the CEM 2016 Mechanical Engineering Conference, Porto, Portugal, June.
  14. Coelho, M., Bousson, K. and Ahmed, K. (2020), "An improved extended Kalman Filter for nonlinear state estimation", Proceedings of the Aerospace Europe Conference 2020 (AEC2020), Bordeaux, France, February.
  15. Cui, B. and Zhang, J. (2008), "The improved ensemble Kalman Filter for multisensor target tracking", Proceedings of the International Symposium on Information Science and Engineering, Shanghai, China, December.
  16. Doumiati, M., Charara, A. and Lechner, D. (2013), Vehicle Dynamics Estimation using Kalman Filtering, ISTE Ltd., London, U.K. and John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
  17. ESA (2019a), GPS Receiver and Orbit Determination, ESA, http://www.esa.int/Education/ESEO/GPS_Receiver_and_Orbit_Determination/(print).
  18. ESA (2019b), Enhanced Situation Awareness, ESA, http://www.esa.int/gsp/ACT/projects/thermal.html.
  19. Evensen, G. (1994), "Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics", J. Geophys. Res., 99(C5), 10143-10162. https://doi.org/10.1029/94JC00572.
  20. Gordon, N.J., Salmond, D.J. and Smith, A.F.M. (1993), "Novel approach to nonlinear/mon-Gaussian Bayesian state estimation", IEE Proc. F Radar Signal Process., 140(2), 107-113. https://doi.org/10.1049/ip-f-2.1993.0015.
  21. Grewal, M.S. and Andrews, A.P. (2001), Kalman Filtering: Theory and Practice Using MATLAB, Wiley-Interscience Publication, Jonh Wiley & Sons, Inc., New York, U.S.A.
  22. Gyorgy, K., Kelemen, A. and David, L. (2014), "Unscented Kalman Filters and particle filter methods for nonlinear state estimation", Proceedings of the 7th International Conference Interdisciplinary in Engineering (INTER-ENG 2013), Tirgu Mures, Romania, October.
  23. Ho, Y. and Lee, R. (1964), "A Bayesian approach to problems in stochastic estimation and control", IEEE T. Automat. Contr., 9(4), 333-339. https://doi.org/10.1109/TAC.1964.1105763.
  24. Hunt, B.R., Kostelich, E.J. and Szunyogh, I. (2005), "Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman Filter", Physica D Nonlin. Phenom., 230(1), 112-126. https://doi.org/10.1016/j.physd.2006.11.008.
  25. Jazwinski, A.H. (1970), Stochastic Processes and Filtering Theory, Academic Press Inc., New York, U.S.A. and London, U.K.
  26. Jiang, X., Li, S., Tao, T. and Wang, B. (2014), "Multi-information fusion-based localization algorithm for Mars rover", Adv. Aircraft Spacecraft Sci., 1(4), 455-469. https://doi.org/10.12989/aas.2014.1.4.455.
  27. Julier, S. and Uhlmann, J.K. (1996), A General Method for Approximating Nonlinear Transformations of Probability Distributions, Robotics Research Group, Department of Engineering Science, University of Oxford, Oxford, U.K.
  28. Julier, S., Uhlmann, J.K. and Durrant-Whyte, H.F. (1995), "A new approach for filtering nonlinear systems", Proceedings of the American Control Conference, Seattle, Washington, U.S.A., June.
  29. Julier, S., Uhlmann, J.K. and Durrant-Whyte, H.F. (2000), "A new method for the nonlinear transformation of means and covariances in filters and estimators", IEEE T. Automat. Contr., 45(3), 477-482. https://doi.org/10.1109/9.847726.
  30. Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng., 82(1), 35-45. https://doi.org/10.1115/1.3662552.
  31. Kalnay, E., Li, H., Miyoshi, T., Yang, S.C. and Ballabrera-Poy, J. (2007), "4-D-Var or ensemble Kalman filter?", Tellus A, 59A, 758-773. https://doi.org/10.1111/j.1600-0870.2007.00261.x.
  32. Kolmogorov, A.N., Doyle, W.L. and Selin, I. (1962), Interpolation and Extrapolation of Stationary Random Sequences, Bulletin of Academic Sciences, Mathematics Series, USSR, Vol. 5, 1941. RM-3090-PR, Rand Corporation, Santa Monica, California, U.S.A.
  33. Lee, D.J. (2005), "Nonlinear Bayesian filtering with applications to estimation and navigation", Ph.D. Dissertation, Texas A&M University, Texas, U.S.A.
  34. Lefebvre, T., Bruyninckx, H. and Schutter, J. (2004), "Kalman Filters for non-linear systems: A comparison of performance", Int. J. Control, 77(7), 639-653. https://doi.org/10.1080/00207170410001704998.
  35. Li, W. and Leung, H. (2004), "Simultaneous registration and fusion of multiple dissimilar sensors for cooperative driving", IEEE T. Intell. Transp., 5(2), 84-98. https://doi.org/10.1109/TITS.2004.828169.
  36. Lorentzen, R.J. and Naevdal, G. (2011), "An iterative ensemble Kalman Filter", IEEE T. Autom. Contr., 56(8), 1990-1995. https://doi.org/10.1109/TAC.2011.2154430.
  37. Maybeck, P.S. (1979), Stochastic Models, Estimation and Control, Volume 1-3, Academic Press Inc., New York, U.S.A.
  38. Mehra, R. (1971), "A comparison of several nonlinear filters for reentry vehicle tracking", IEEE T. Autom. Contr., 16(4), 307-319. https://doi.org/10.1109/TAC.1971.1099744.
  39. Mitchell, H.L., Houtekamer, P.L. and Pellerin, G. (2002) "Ensemble size, balance and model-error representation in an ensemble Kalman Filter", Mon. Weather Rev., 130(11), 2791-2808. https://doi.org/10.1175/1520-0493(2002)130%3C2791:ESBAME%3E2.0.CO;2.
  40. Mitter, S.K. and Newton, N.J. (2005), "Information and entropy flow in the Kalman-Bucy Filter", J. Stat. Phys., 118(1-2), 145-176. https://doi.org/10.1007/s10955-004-8781-9.
  41. Mu, J. (2012), "A comparison of three nonlinear filters for reentry ballistic target tracking", J. Inform. Comput. Sci., 9(17), 5283-5290.
  42. NASA (2019a), Discovery of the Kalman Filter as a Practical Tool for Aerospace and Industry, Ames - Research Center, Moffett Field, California, U.S.A. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843.pdf.
  43. NASA (2019b), Rotorcraft Research, Ames -Research Center, Moffett Field, California, U.S.A. https://history.nasa.gov/SP-3300/ch9.htm.
  44. NASA (2019c), Determination of Debris Risk to the public Due to the Columbia Breakup During Reentry, NASA, Moffett Field, California, U.S.A. https://history.nasa.gov/columbia/Troxell/Columbia%20Web%20Site/CAIB/CAIB%20Website/CAIB%20Report/Volume%202/part16.pdf.
  45. Ning, X. and Fang, J. (2007), "An autonomous celestial navigation method for LEO satellites based on unscented Kalman Filter and information fusion", Aerosp. Sci. Technol., 11(2), 222-228. https://doi.org/10.1016/j.ast.2006.12.003.
  46. Posenen, H. and Piche, R. (2010), "Cubature-based Kalman Filters for positioning", Proceedings of the 7th Workshop on Positioning, Navigation and Communication, Dresden, Germany, March.
  47. Rigatos, G. and Tzafestas, S. (2007), "Extended Kalman filtering for fuzzy modelling and multi-sensor fusion", Math. Comp. Model. Dyn., 13(3), 251-266. https://doi.org/10.1080/01443610500212468.
  48. Roa, J.R., Gopalratnam, G. and Twala, B. (2017), Nonlinear Filtering: Concepts and Engineering Applications, Taylor & Francis Group, Boca Raton, Florida, U.S.A.
  49. Romanenko, A. and Castro, J.A.A.M. (2004), "The unscented filter as an alternative to the EKF for nonlinear state estimation: A simulation case study", Comput. Chem. Eng., 28(3), 347-355. https://doi.org/10.1016/S0098-1354(03)00193-5.
  50. Sarkka, S. and Nummenmaa, A. (2009), "Recursive noise adaptive Kalman Filtering by variational Bayesian approximations", IEEE T. Autom. Contr., 54(3), 596-600. https://doi.org/10.1109/TAC.2008.2008348.
  51. Simon, D. (2006), Optimal State Estimation: Kalman, $H{\infty}$ and Nonlinear Approaches, Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
  52. Snyder, C. and Zhang, F. (2003), "Assimilation of simulated Doppler radar observations with an ensemble Kalman Filter", Mon. Weather Rev., 131(8), 1663-1677. https://doi.org/10.1175//2555.1.
  53. Tanizaki, H. (1996), Nonlinear Filters: Estimation and Applications, Springer-Verlag, Berlin, Germany.
  54. Wan, E.A. and Van der Merwe, R. (2000), "The unscented Kalman Filter for nonlinear estimation", Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, Alberta, Canada, October.
  55. Welch, G. and Bishop, G. (2001), "An introduction to the Kalman Filter", NC 27599-3175, Siggraph, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.
  56. Wiener, N. (1949), Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications, M.I.T. Press, Cambridge, Massachusetts, U.S.A.
  57. Wu, B. and Wang, T. (2014), "Model updating with constrained unscented Kalman filter for hybrid testing", Smart Struct. Syst., 14(6), 1105-1129. https://doi.org/10.12989/sss.2014.14.6.1105.
  58. Xia, Q., Rao, M., Ying, Y. and Shen, X. (1994), "Adaptive fading Kalman filter with an application", Automatica, 30(8), 1333-1338. https://doi.org/10.1016/0005-1098(94)90112-0.
  59. Xiong, K., Zhang, H.Y. and Chan, C.W. (2006), "Performance evaluation of UKF-based nonlinear filtering", Automatica, 42(2), 261-270. https://doi.org/10.1016/j.automatica.2005.10.004.
  60. Yang, Y. and Zhou, Z. (2017), "Attitude determination: With or without spacecraft dynamics", Adv. Aircraft Spacecraft Sci., 4(3), 335-351. https://doi.org/10.12989/aas.2017.4.3.335.
  61. Yuen, K.V., Liang, P.F. and Kuok, S.C (2013), "Online estimation of noise parameters for Kalman filter", Struct. Eng. Mech., 47(3), 361-380. https://doi.org/10.12989/sem.2013.47.3.361.
  62. Zhang, X.C. and Guo, C.J. (2013), "Cubature Kalman Filters: Derivation and extension", Chin. Phys. B, 22(12), 1-6.
  63. Zhao, J., Netto, M. and Mili, L. (2017), "A robust iterated extended Kalman Filter for power system dynamic state estimation", IEEE T. Power Syst., 32(4), 3205-3216. https://doi.org/10.1109/TPWRS.2016.2628344.
  64. Zhao, X., Li, J., Yan, X. and Ji, S. (2018), "Robust adaptive cubature Kalman Filter and its application to ultra-tightly coupled SINS/GPS navigation system", Sensors, 18(7), 1-19. https://doi.org/10.3390/s18072352.

Cited by

  1. An Improved Extended Kalman Filter for Radar Tracking of Satellite Trajectories vol.5, pp.3, 2020, https://doi.org/10.3390/designs5030054