• 제목/요약/키워드: Kaehlerian space

검색결과 11건 처리시간 0.025초

ON FIBRED KAEHLERIAN SPACES

  • Choi, Jin Hyuk
    • 충청수학회지
    • /
    • 제19권4호
    • /
    • pp.417-426
    • /
    • 2006
  • In this paper, we are to construct a new fibred Riemannian space with almost complex structure from the lift of an almost contact structures of the base space and that of each fibre. Moreover, we deal with the fibred Riemannian space with various Kaehlerian structure.

  • PDF

Simons' Type Formula for Kaehlerian Slant Submanifolds in Complex Space Forms

  • Siddiqui, Aliya Naaz;Shahid, Mohammad Hasan;Jamali, Mohammed
    • Kyungpook Mathematical Journal
    • /
    • 제58권1호
    • /
    • pp.149-165
    • /
    • 2018
  • A. Bejancu [2] was the first who instigated the new concept in differential geometry, i.e., CR-submanifolds. On the other hand, CR-submanifolds were generalized by B. Y. Chen [7] as slant submanifolds. Further, he gave the notion of a Kaehlerian slant submanifold as a proper slant submanifold. This article has two objectives. For the first objective, we derive Simons' type formula for a minimal Kaehlerian slant submanifold in a complex space form. Then, by applying this formula, we give a complete classification of a minimal Kaehlerian slant submanifold in a complex space form and also obtain its some immediate consequences. The second objective is to prove some results about semi-parallel submanifolds.

NEARLY KAEHLERIAN PRODUCT MANIFOLDS OF TWO ALMOST CONTACT METRIC MANIFOLDS

  • Ki, U-Hang;Kim, In-Bae;Lee, Eui-Won
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.61-66
    • /
    • 1984
  • It is well-known that the most interesting non-integrable almost Hermitian manifold are the nearly Kaehlerian manifolds ([2] and [3]), and that there exists a complex but not a Kaehlerian structure on Riemannian product manifolds of two normal contact manifolds [4]. The purpose of the present paper is to study nearly Kaehlerian product manifolds of two almost contact metric manifolds and investigate the geometrical structures of these manifolds. Unless otherwise stated, we shall always assume that manifolds and quantities are differentiable of class $C^{\infty}$. In Paragraph 1, we give brief discussions of almost contact metric manifolds and their Riemannian product manifolds. In paragraph 2, we investigate the perfect conditions for Riemannian product manifolds of two almost contact metric manifolds to be nearly Kaehlerian and the non-existence of a nearly Kaehlerian product manifold of contact metric manifolds. Paragraph 3 will be devoted to a proof of the following; A conformally flat compact nearly Kaehlerian product manifold of two almost contact metric manifolds is isomatric to a Riemannian product manifold of a complex projective space and a flat Kaehlerian manifold..

  • PDF

Generic submanifolds of a quaternionic kaehlerian manifold with nonvanishing parallel mean curvature vector

  • Jung, Seoung-Dal;Pak, Jin-Suk
    • 대한수학회지
    • /
    • 제31권3호
    • /
    • pp.339-352
    • /
    • 1994
  • A sumbanifold M of a quaternionic Kaehlerian manifold $\tilde{M}^m$ of real dimension 4m is called a generic submanifold if the normal space N(M) of M is always mapped into the tangent space T(M) under the action of the quaternionic Kaehlerian structure tensors of the ambient manifold at the same time.The purpose of the present paper is to study generic submanifold of quaternionic Kaehlerian manifold of constant Q-sectional curvature with nonvanishing parallel mean curvature vector. In section 1, we state general formulas on generic submanifolds of a quaternionic Kaehlerian manifold of constant Q-sectional curvature. Section 2 is devoted to the study generic submanifolds with nonvanishing parallel mean curvature vector and compute the restricted Laplacian for the second fundamental form in the direction of the mean curvature vector. As applications of those results, in section 3, we prove our main theorems. In this paper, the dimension of a manifold will always indicate its real dimension.

  • PDF

FIBRED RIEMANNIAN SPACE WITH ALMOST COMPLEX STRUCTURES

  • Choi, Jin-Hyuk;Kang, Il-Won;Kim, Byung-Hak;Shin, Yang-Mi
    • 대한수학회지
    • /
    • 제46권1호
    • /
    • pp.171-185
    • /
    • 2009
  • We study fibred Riemannian spaces with almost complex structures which are induced by the almost complex structure or the almost contact structure on the base and fibre. We show that if the total space is a complex space form, then the total space is locally Euclidean. Moreover, we deal with the fibred Riemannian space with various Kaehlerian structures.

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

On real hypersurfaces of a complex hyperbolic space

  • Kang, Eun-Hee;Ki, U-Hang
    • 대한수학회보
    • /
    • 제34권2호
    • /
    • pp.173-184
    • /
    • 1997
  • An n-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c. As is well known, complete and simply connected complex space forms are a complex projective space $P_n C$, a complex Euclidean space $C_n$ or a complex hyperbolic space $H_n C$ according as c > 0, c = 0 or c < 0.

  • PDF

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • 대한수학회지
    • /
    • 제32권2호
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF