CHARACTERIZATIONS OF SOME REAL HYPERSURFACES IN A COMPLEX SPACE FORM IN TERMS OF LIE DERIVATIVE*

U-HANG KI AND YOUNG JEN SUH

1. Introduction

A complex $n(\geq 2)$ -dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space P_nC , a complex Euclidean space C^n or a complex hyperbolic space H_nC , according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersurfaces of P_nC and H_nC .

Now, let M be a real hypersurface of $M_n(c), c\neq 0$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kaehler metric and the almost complex structure of $M_n(c)$. We denote by \mathcal{L}_{ξ} the Lie derivative with respect to ξ .

Recently Ki, Kim and Lee [4] gives a characterization of real hypersurfaces of type A. We denote by A a shape operator of the real hypersurface M. They proved the following.

THEOREM A. Let M be a real hypersurface of P_nC , $n\geq 3$. If it satisfies

$$(1.1) \mathcal{L}_{\varepsilon} A = 0,$$

where A denotes the shape operator, then M is locally a tube of radius r over one of the following Kahler submanifolds:

$$(A_1)$$
 a hyperplane $P_{n-1}C$, where $0 < r < \pi/2$,

Received August 12, 1993.

1991 AMS Subject Classification: 53C15, 53C45.

Key words: real hypersurfaces of type A, ruled real hypersurface, Lie derivative.

^{*} Partially supported by TGRC-KOSEF and BSRI 94-1404.

(A₂) a totally geodesic
$$P_kC$$
 (1 < $k < n-2$), where 0 < $r < \pi/2$.

As an example of special real hypersurfaces of P_nC different from the above ones, we can give some characterizations of ruled real hypersurfaces in terms of the Lie derivative of the second fundmental form.

On the other hand, Kimura [7] obtained some properties about a ruled real hypersurface M of $P_nC,n\geq 3$. In particular, an example of minimal ruled hypersurface M of $P_nC,n\geq 3$ is constructed. Let T_0 be a distribution defined by a subspace $T_0(x)=\{u\in T_xM:u\perp\xi(x)\}$ of the tangent space $T_x(M)$, which is called the holomorphic distribution. Kimura and Maeda [8] also proved the following

THEOREM B. Let M be a real hypersurface of P_nC , $n\geq 3$. Then the second fundamental form is η -parallel and the holomorphic distribution T_0 is integrable if and only if M is locally a ruled real hypersurface.

The purpose of this article is to generalize Therem A slightly and then to give another characterization of the ruled real hypersurfaces in $M_n(c)$. Assume that ξ is not necessary principal. Then we can put $A\xi = \alpha \xi + \beta U$, where U is a unit vector orthogonal to ξ and α and ξ are smooth functions on M. We prove the following.

THEOREM 1. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$.

$$(1.2) g((\mathcal{L}_{\mathcal{E}}A)X, Y) = 0$$

for any vector fields X and Y in the distribution T_0 , then M is of type A.

THEOREM 2. Let M be a real hypersurface of $M_n(c)$, $c\neq 0$ and $n\geq 3$. If it satisfies

(1.3)
$$g((\mathcal{L}_{\xi}A)X,Y) = \beta^2 g(X,\phi U)g(Y,U)$$

for any vector fields X and Y in the distribution T_0 and if the structure vector field is not principal and $d\alpha(\xi)\neq 0$, then M is locally congruent to a ruled real hypersurface.

2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex space form. Let M be a real hypersurface of a complex n-dimensional complex space form $M_n(c)$ of constant holomorphic sectional curvature $c(\neq 0)$ and let C be a unit normal field on a neighborhood of a point x in M. We denote by J an almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood of x in M, the transformation of X and C under J can be represented as

$$JX = \phi X + \eta(X)C, \qquad JC = -\xi,$$

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on a neighborhood of x in M, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on M. By properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$\phi^2 = -I + \eta \otimes \xi$$
, $\phi \xi = 0$, $\eta(\phi X) = 0$, $\eta(\xi) = 1$,

where I denotes the identity transformation. Accordingly, the set is so called an *almost contact metric structure*. Furthermore the covariant derivative of the structure tensors are given by

$$(2.1) \qquad (\nabla_X \phi) Y = \eta(Y) A X - q(AX, Y) \xi, \quad \nabla_X \xi = \phi A X,$$

where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curvature c, the equation of Gauss and Codazzi are respectively given as follows

(2.2)

$$\begin{split} R(X,Y)Z = &\frac{c}{4} \left\{ g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y \right. \\ &\left. - 2g(\phi X,Y)\phi Z \right\} + g(AY,Z)AX - g(AX,Z)AY, \end{split}$$

$$(2.3) \quad (\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \},$$

where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X.

The second fundamental form is said to be η -parallel if the shape operator A satisfies $g((\nabla_X A)Y, Z) = 0$ for any vector fields X, Y and Z in T_0 .

3. Proof of Theorem 1

Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$. In order to prove Theorem 1 the norm of the vector field $(A\phi - \phi A)X$ for any vector field X in T_0 shall be estimated by the Lie derivative $\mathcal{L}_{\xi}A$ with respect to ξ . By the properties of the Lie derivative we have

$$(\mathcal{L}_{\xi}A)X = \mathcal{L}_{\xi}(AX) - A\mathcal{L}_{\xi}X$$
$$= (\nabla_{\xi}A)X - \nabla_{AX}\xi + A\nabla_{X}\xi.$$

Consequently, by the second equation of (2.1) it is reformed to

(3.1)
$$g((\mathcal{L}_{\xi}A)X,Y)$$
$$= g((\nabla_{\xi}A)X,Y) - g(\phi A^{2}X,Y) + g(A\phi AX,Y),$$

for any vector fields X and Y in T_0 . Interchanging X and Y in this equation, we get

$$g((\mathcal{L}_{\xi}A)Y, X)$$

$$= g((\nabla_{\xi}A)X, Y) - g(\phi A^{2}Y, X) + g(A\phi AY, X),$$

from which combined with (3.1) it follows that

(3.2)
$$g((\mathcal{L}_{\xi}A)X,Y) - g((\mathcal{L}_{\xi}A)Y,X)$$
$$= -g((A^2\phi - 2A\phi A + \phi A^2)X,Y).$$

Now, we do not necessarily assume that ξ is principal. So we put $A\xi = \alpha \xi + \beta U$, where U is a unit vector field orthogonal to ξ and α and β are smooth functions on M. By the direct calculation and by

using the property of the structure tensor ϕ , the square of the norm $(A\phi - \phi A)X$ is given as follows;

$$g((A\phi - \phi A)X, (A\phi - \phi A)X)$$

= $g((A^2\phi - 2A\phi A + \phi A^2)X, \phi X) - \beta^2 g(X, U)^2,$

from which together with (3.2) it follows that

(3.3) $g((A\phi - \phi A)X, (A\phi - \phi A)X)$ $= g((\mathcal{L}_{\mathcal{E}}A)\phi X, X) - g((\mathcal{L}_{\mathcal{E}}A)X, \phi X) - \beta^2 g(X, U)^2$

for any vector field X in T_0 .

Proof of Theorem 1. By the assumption $g((\mathcal{L}_{\xi}A)X,Y)=0$ for any X and Y in T_0 and (3.3) it turns out to be

$$(3.4) (A\phi - \phi A)X = 0, \quad \beta q(X, U) = 0, \quad X \in T_{\sigma}.$$

By the above second equation it satisfies $\beta = 0$, which means that ξ is principal, i.e., $A\xi = \alpha \xi$. By this property and the first equation of (3.4) the shape operator A must commute the structure tensor ϕ . Namely we have

$$A\phi - \phi A = 0.$$

By a theorem due to Okumura [11] in P_nC and Montiel and Romero [10] in H_nC , this completes the proof.

REMARK 1. By a theorem due to Ki, Kim and Lee [4] the following conditions are equivalent with each other:

$$(1)\mathcal{L}_{\xi}g = 0, \quad (2)\mathcal{L}_{\xi}\phi = 0, \quad (3)\mathcal{L}_{\xi}A = 0.$$

According to Theorem 1, it is shown that the restriction of the condition (3) to the distribution T_0 implies (1) and (2). However, we note that ruled real hypersurfaces satisfy

$$\mathcal{L}_{\xi}g(X,Y) = 0, \quad g((\mathcal{L}_{\xi}\phi)X,Y) = 0$$

for any vector fields X and Y in T_0 , but it is not of type A.

REMARK 2. In the forthcoming paper ([6]) the fact that if it satisfies $(\mathcal{L}_{\xi}\phi)X=0$ for any X in T_0 , then $\mathcal{L}_{\xi}\phi=0$ is observed.

4. Ruled real hypersurfaces

This section is concerned with necessary properties about ruled real hypersurfaces. First of all, we recall a ruled real hypersurface M of $M_n(c)$, $c\neq 0$. Let $\gamma:I\to M_n(c)$ be any regular curve. For any $t(\in I)$ let $M_{n-1}^{(t)}(c)$ be a totally geodesic complex hypersurface through the point $\gamma(t)$ of $M_n(c)$ which is orthogonal to a holomorphic plane spanned by $\gamma'(t)$ and $J\gamma'(t)$. Set $M=\{x\in M_{n-1}^{(t)}(c):t\in I\}$. Then the construction of M asserts that M is a real hypersurface of $M_n(c)$, which is called a ruled real hypersurface. This means that there are many ruled real hypersurfaces of $M_n(c)$. Moreover from this construction we know that the distribution T_0 defined by $T_0(x)=\{X\in T_xM:X\perp \xi_x\}$ for $x\in M$ is integrable and its integral manifold is a totally geodesic submanifold $M_{n-1}(c)$ of $M_n(c)$, $c\neq 0$.

Now let us give some fundamental properties of the ruled real hypersurface M of $M_n(c), c\neq 0$. Let us put $A\xi = \alpha\xi + \beta U$, where U is a unit vector orthogonal to ξ and α and $\beta(\beta\neq 0)$ are smooth functions on M. As is seen in [1] and [8], the shape operator A satisfies

$$(4.1) AU = \beta \xi.$$

Infact, if we let $AU = \beta \xi + \gamma U + \delta W$ for certain vector field W orthogonal to ξ and U, then

$$\gamma = g(AU, U) = g(-D_U C, U) = g(C, D_U U) = g(C, \nabla_U U) = 0,$$
and $\delta = g(AU, W) = g(-D_U C, W) = g(C, D_U W) = g(C, \nabla_U W) = 0,$

because the distribution T_0 is integrable and its integral manifold is totally geodesic in $M_n(c)$, $c\neq 0$, where D and ∇ denotes the Riemannian connection of $M_n(c)$ and M respectively. Moreover, from (4.1) it follows that

$$(4.2) AX = 0,$$

for any vector field X orthogonal to ξ and U, because

$$g(AX, \xi) = g(A\xi, X) = g(\alpha \xi + \beta U, X) = 0,$$

 $g(AX, U) = g(AU, X) = \beta g(\xi, X) = 0, and$
 $g(AX, Y) = g(-D_X C, Y) = g(C, D_X Y) = g(C, \nabla_X Y) = 0$

for any X and Y in T_0 orthogonal to ξ and U. Thus from (4.1) and (4.2) it turns out to be

(4.3)
$$A\phi X = -\beta g(X, \phi U)\xi, \quad \phi AX = 0, \quad X \in T_0,$$

which implies that

(4.4)
$$g((A\phi - \phi A)X, Y) = 0, X, Y \in T_0.$$

Next the covariant derivative $\nabla_{\xi} A$ with respect to ξ is explicitly expressed. Since it satisfies

$$\begin{split} g((\nabla_{\xi}A)X,Y) &= g(\nabla_{\xi}(AX) - A\nabla_{\xi}X,Y) \\ &= g(\nabla_{\xi}(AX),Y) - g(\nabla_{\xi}X,AY), \quad X,Y \in T_0, \end{split}$$

we get, by the direct calculation of the left hand side of the above relation and using the property $\nabla_{\xi} \xi = \phi A \xi = \beta \phi U$ by (2.1),

$$g((\nabla_{\xi}A)X,Y) = \begin{cases} 0, & X = Y = U; \\ \beta^2 g(Y,\phi U), & X = U,Y \pm U; \\ \beta^2 g(X,\phi U), & X \pm U,Y = U; \\ 0, & X,Y \pm U. \end{cases}$$

On the other hand, we have

$$g(\phi A^{2}X,Y) = \begin{cases} 0, & X = Y = U; \\ \beta^{2}g(Y,\phi U), & X = U,Y \perp U; \\ 0, & X \perp U,Y = U; \\ 0, & X,Y \perp U. \end{cases}$$

Because of $\phi AX = 0$ for any X in T_0 , we get by (3.1)

$$(4.5) g((\mathcal{L}_{\xi}A)X,Y) = \beta^2 g(X,\phi U)g(Y,U), \quad X,Y \in T_0.$$

This shows that the ruled real hypersurface M of $M_n(c)$ satisfies the condition (1.3).

5. Proof of Theorem 2

In this section we shall give a characterization for ruled real hypersurfaces. Let M be the real hypersurface of $M_n(c)$, $c\neq 0$, and assume that the structure vector is not principal. We put $A\xi = \alpha\xi + \beta U$, where U is a unit vector in the holomorphic distribution T_0 . Then by the assumption the function β does not vanish identically on M.

Concerning the ruled real hypersurfaces the following is proved by the present authors [6].

THEOREM C. Let M be a real hypersurface of $M_n(c), c \neq 0$ and $n \geq 3$. If it satisfies

$$\mathcal{L}_{\xi}g(X,Y) = 0,$$

$$(5.2) g((\mathcal{L}_{\xi}A\phi)X,Y) = 0$$

for any vector fields X and Y in the distribution T_0 , and if the structure vector field is not principal and $d\alpha(\xi)\neq 0$, then M is locally congruent to a ruled real hypersurface.

Now, let M_0 be an open subset of M consisting of points x at which $\beta(x)\neq 0$. By the assumption that ξ is not principal, the set M_0 is not empty. In order to prove the theorem, it suffices to show that the equations (5.1) and (5.2) in Theorem C hold for any vector fields X and Y in T_0 on M_0 .

We consider first (3.3). By the assumption

$$g((\mathcal{L}_{\xi}A)X,Y) = \beta^2 g(X,\phi U)g(Y,U),$$

We get

$$g((A\phi - \phi A)X, (A\phi - \phi A)X) = \beta^{2} g(X, \phi U)^{2}.$$

From this equation we can calculate the norm of $(A\phi - \phi A)X + \beta g(X, \phi U)\xi$, and we can easily obtain $(A\phi - \phi A)X + \beta g(X, \phi U)\xi = 0, X \in T_0$. This means that (5.1) holds on M_0 .

It is also seen that (5.1) is equivalent to

$$g((\mathcal{L}_{\varepsilon}\phi)X,Y)=0, X,Y\in T_0.$$

Using the property of the Lie derivative and the above equation we can prove that (5.2) holds on M_0 . In fact, by the direct calculation, we get

$$\begin{split} g((\mathcal{L}_{\xi}A\phi)X,Y) &= g((\mathcal{L}_{\xi}A)\phi X,Y) + g(A(\mathcal{L}_{\xi}\phi)X,Y) \\ &= \beta^2 g(\phi X,\phi U)g(Y,U) + g((\mathcal{L}_{\xi}\phi)X,AY) \\ &= \beta^2 g(\phi X,\phi U)g(Y,U) + g((\mathcal{L}_{\xi}\phi)X,(AY)_{\scriptscriptstyle{0}}) + g(AY,\xi)g((\mathcal{L}_{\xi}\phi)X,\xi) \\ &= \beta^2 g(\phi X,\phi U)g(Y,U) + \beta g(Y,U)g((\mathcal{L}_{\xi}\phi)X,\xi), \end{split}$$

where $(AY)_0$ denotes the T_0 -component of AY. Because of $g((\mathcal{L}_{\xi}\phi)X, \xi) = -\beta g(X, U)$, we can prove (5.2).

This completes the proof of Theorem 2.

References

- 1. S. S. Ahn, S. B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math. 17 (1993), 311-322.
- 2. J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
- 3. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- 4. U-H. Ki, S. J. Kim and S. B. Lee, Some characterizations of a real hypersurface of type A, Kyungpook Math. J. 31 (1991), 205-221.
- U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama 32 (1990), 207-221.
- 6. U-H. Ki and Y. J. Suh, Some characterizations of ruled real hypersurfaces in a complex space form, to appear in J. of Korean Math. (1996).
- M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in P_nC, Math. Ann. 276 (1987), 487-497.
- 8. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z.202 (1989), 299-311.
- S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
- M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- R. Takagi, On homogeneous real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- K. Yano and M. Kon, CR-submanifolds of Kaehler and Sasakian manifolds, Birkhäuser, Boston, Basel, Strutgart, 1983.

Department of Mathematics Kyungpook University Taegu 702-701, KOREA