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CHARACTERIZATIONS OF SOME REAL
HYPERSURFACES IN A COMPLEX SPACE
FORM IN TERMS OF LIE DERIVATIVE*

U-HAaNG K1 AND YOUNG JiN SuH

1. Introduction

A complex n(>2)-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called a complex space form, which is
denoted by My(c). A complete and simply connected complex space
form is a complex projective space P,C, a complex Euclidean space
C" or a complex hyperbolic space H,C, according as ¢ > 0, ¢ = 0
or ¢ < 0. Takagi [12] and Berndt [2] classified all homogeneous real
hypersurfaces of P,,C and H,C.

Now, let M be a real hypersurface of M,(2),c#0. Then M has an
almost contact metric structure (¢,€,n,¢) induced from the Kaehler
metric and the almost complex structure of M, (c). We denote by L¢
the Lie derivative with respect to €.

Recently Ki,Kim and Lee [4] gives a characterization of real hy-
persurfaces of type 4. We denote by A a shape operator of the real
hypersurface M. They proved the following.

THEOREM A. Let M be a real hypersurface of P,C, n>3. If it
satisfies

(1.1) LeA =0,

where A denotes the shape operator, then M is locally a tube of radius
r over one of the following Kahler submanifolds:
(Ay) a hyperplane P,,_1C, where 0 <r < n/2,
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(Az) a totally geodesic PrC (1< k < n —2),where 0 < r < /2.

As an example of special real hypersurfaces of P,C different from
the above ones, we can give some characterizations of ruled real hy-
persurfaces in terms of the Lie derivative of the second fundmental
form.

On the other hand, Kimura [7] obtained some properties about a
ruled real hypersurface M of P,C,n>3. In particular, an example of
minimal ruled hypersurface M of P,C,n>3 is constructed. Let Tp be
a distribution defined by a subspace To(z) = {u€T, M : ulé(z)} of
the tangent space T;(M), which is called the holomorphic distribution.
Kimura and Maeda [8] also proved the following

THEOREM B. Let M be a real hypersurface of P,C, n>3. Then the
second fundamental form is n-parallel and the holomorphic distribution
Ty is integrable if and only if M is locally a ruled real hypersurface.

The purpose of this article is to generalize Therem A slightly and
then to give another characterization of the ruled real hypersurfaces
in Mu(c). Assume that £ is not necessary principal. Then we can put
Af = af + BU, where U is a unit vector orthogonal to ¢ and o and ¢
are smooth functions on M. We prove the following.

THEOREM 1.  Let M be a real hypersurface of M, (c), c#0, n>3.
(1.2) 9(LeA)X,¥) =0

for any vector fields X and Y in the distribution Ty, then M is of type
A

THEOREM 2. Let M be a real hypersurface of Mn(c), ¢c#£0 and n>3.
If it satisfies
(1.3) 9((LeA)X,Y) = B%g(X, ¢U)g(Y,U)

for any vector fields X and Y in the distribution Ty and if the structure
vector field is not principal and da(£)#0, then M is locally congruent
to a ruled real hypersurface.
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2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces
of a complex space form. Let M be a real hypersurface of a complex
n-dimensional complex space form M, (c) of constant holomorphic sec-
tional curvature ¢(#0) and let C be a unit normal field on a neighbor-
hood of a point o in M. We denote by J an almost complex structure
of My(c). For a local vector field X on a neighborhood of z in M, the
transformation of X and C under J can be represented as

JX =¢X +n(X)C, JC = ~¢,

where ¢ defines a skew-symmetric transformetion on the tangent bun-
dle TM of M, while  and ¢ denote a 1-form and a vector field on
a neighborhood of = in M, respectively. Moreover, it is seen that
9(&, X') = n(X),where g denotes the induced Riemannian metric on M.
By properties of the almost complex structure J, the set (¢, €,n,g) of
tensors satisfies

¢ = —T+n®¢ ¢£=0, 7(¢X) =0, n€) =1,

where I denotes the identity transformation. Accordingly, the set is so
called an almost contact metric structure. Furthermore the covariant
derivative of the structure tensors are given by

(21)  (Vxé)Y = n(Y)AX — g(AX,Y)E, V€= ¢pAX,

where V is the Riemannian connection of ¢ and A denotes the shape
operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional cur-
vature ¢, the equation of Gauss and Codazzi are respectively given as
follows

(2.2)
R(X,Y)Z =§;{9(YZ 2)X —g(X,2)Y +g(8Y,Z)pX — g(¢X,Z)¢Y
—29(6X,Y)Z} + g(AY, Z)AX — g(AX, Z)AY,

(23) (VXA = (Vy )X = 2{n(X)8Y — 5.Y)eX ~ 20(¢X, Y )¢},
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where R denotes the Riemannian curvature tensor of M and VxA
denotes the covariant derivative of the shape operator A with respect
to X.

The second fundamental form is said to be n-parallel if the shape
operator A satisfies g({(VxA)Y,Z) = 0 for any vector fields X,Y and
Z in Tp.

3. Proof of Theorem 1

Let M be a real hypersurface of My(c), ¢#0, n>3. In order to prove
Theorem 1 the norm of the vector field (A¢ — #A)X for any vector field
X in T shall be estimated by the Lie derivative L¢A with respect to
£. By the properties of the Lie derivative we have

(LeA)X =Le(AX) — ALeX
=(VeA)X — Vax€+ AVxE.

Consequently, by the second equation of (2.1) it is reformed to

(3.1) 9(LeA)X,Y)

for any vector fields X and Y in Ty. Interchanging X and Y in this
equation, we get

9((LeA)Y, X)
= g((VeA)X,Y) — g(¢A%Y, X) + g(A44Y, X),

from which combined with (3.1) it follows that

(32) 9((LeA)X,Y) — g((LeA)Y, X)
= —g((A%¢ — 2444 + ¢AHX,Y).
Now, we do not necessarily assume that £ is principal. So we put

At = af + U, where U is a unit vector field orthogonal to ¢ and «
and § are smooth functions on M. By the direct calculation and by
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using the property of the structure tensor ¢, the square of the norm
(A¢ — ¢A)X is given as follows;
9((Ag — ¢A)X, (A - 9A)X)
= 9((A%¢ — 2494 + $4M) X, ¢X) - f%¢(X,U)?,

from which together with (3.2) it follows that

(3.3)
9((Ad — dA)X,(Ad — ¢A)X)
= g((LeA)$X, X) — g((LcA)X, X)) — B2g(X,U)?

for any vector field X in Tj.

Proof of Theorem 1. By the assumption g((L¢A)X,Y) = 0 for any
X and Y in Tp and (3.3) it turns out to be

(3.4) (Ap — dA)X =0, Bg(X,U)=0, XeT,.

By the above second equation it satisfies § = 0, which means that ¢
is principal, i.e., Af = af. By this property and the first equation
of (3.4) the shape operator A must commute the structure tensor ¢.
Namely we have

Ad — ¢pA = 0.

By a theorem due to Okumura [11] in P,C and Montiel and Romero
(10] in H, C, this completes the proof.

REMARK 1. By a theorem due to Ki,Kim and Lee [4] the following
conditions are equivalent with each other:

(1)Leg =0, (2)Lehp =0, (3)LeA=0.

According to Theorem 1, it is shown that the restriction of the condi-
tion (3) to the distribution 75 implies (1) and (2). However, we note
that ruled real hypersurfaces satisfy

Leg(X,Y1=0, g((Leg)X,Y) =0

for any vector fields X" and ¥ in Ty, but it is not of type 4.
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REMARK 2. In the forthcoming paper ([6]) the fact that if it satisfies
(Led)X =0 for any X in Ty, then L¢¢ = 0 is observed.

4. Ruled real hypersurfaces

This section is concerned with necessary properties about ruled real
hypersurfaces. First of all, we recall a ruled real hypersurface M of
Mn(c), c#0. Let v : I-My,(c) be any regular curve. For any ¢(€7) let
M,(,t_)l (¢) be a totally geodesic complex hypersurface through the point
v(t) of My(c) which is orthogonal to a holomorphic plane spanned by
¥'(t) and J4'(t). Set M = {.’BEM,(:_ZI(C) : t€l}. Then the construction
of M asserts that M is a real hypersurface of M,(c),which is called
a ruled real hypersurface. This means that there are many ruled real
hypersurfaces of M,(c¢). Moreover from this construction we know that
the distribution Ty defined by To(z) = {X €T M : X L&} for xeM is
integrable and its integral manifold is a totally geodesic submanifold
M _1(c) of My(c), c#0.

Now let us give some fundamental properties of the ruled real hy-
persurface M of My,(c),c#0. Let us put A{ = af + SU, where U is a
unit vector orthogonal to £ and a and B(8#0) are smooth functions
on M. As is seen in [1] and [8], the shape operator A satisfies

(4.1) AU = g¢.

Infact, if we let AU = B€ +yU + §W for certain vector field W orthog-
onal to £ and U, then

v =g(AU,U) = g(-DyC,U) = ¢(C, DyU) = ¢(C,VyU) = 0,and
6 =g(AU, W) = g(-=DyC,W) = g(C,DyW) = ¢g(C,VyW) =0,

because the distribution T is integrable and its integral manifold is
totally geodesic in M, (c), ¢c#0, where D and V denotes the Riemann-
ian connection of My,(c) and M respectively. Moreover, from (4.1) it
follows that

(4.2) AX =0,
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for any vector field X orthogonal to ¢ and U, because
9(AX,§) = (A, X) = g(al + U, X) = 0,
g(AX,U) = g(AU, X) = Bg(£,X) = 0,and
9(AX,Y) = g(-DxC,Y) = g(C,DxY) = g(C,VxY) =0

for any X and Y in T orthogonal to ¢ and U. Thus from (4.1) and
(4.2) it turns out to be

(43) A-qb*’( = _ﬁg(X’ éU)ﬁv $AX = 0, XETO»
which implies that
(4.4) g((A¢d — 0 A)X,Y) =0,X,Y€eTy.

Next the covariant derivative VA with respect to € is explicitly ex-
pressed. Since it satisfies

9((VeA)X,Y) = g(Ve(AX) ~ AV X,Y)
= g(Ve(AX),Y) - g(VeX,AY), X,YeT,
we get, by the direct calculation of the left hand side of the above
relation and using the property V€ = A€ = BoU by (2.1),
0, X=Y=U;
Bg(Y, oU), X=UY.LU;

VeA)X,Y) =
g(( ¢ ) ’ ) ﬁ2g(‘¥> ¢L7)’ X1U,Y =U;

0, X, Y LU.
On the other hand, we have
- #2g(Y,¢U), X =UYLU;
A%X,Y) =
o ) 0, X1UY = U,
0, ALY LU,

Because of ¢AX = 0 for any X in Tp, we get by (3.1)
(45)  g((LA)X,Y) = fg(X,¢U)g(Y.U), X,YeT.

This shows that the ruled real hypersurface M of M, (c) satisfies the
condition (1.3).
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5. Proof of Theorem 2

In this section we shall give a characterization for ruled real hyper-
surfaces. Let M be the real hypersurface of Myp(c), ¢#£0,and assume
that the structure vector is not principal. We put A¢ = af + BU,
where U is a unit vector in the holomorphic distribution Tp. Then by
the assumption the function 3 does not vanish identically on M.

Concerning the ruled real hypersurfaces the following is proved by
the present authors [6].

THEOREM C. Let M be a real hypersurface of Mp(c),c#0 and n>3.
If it satisfies

(5.1) Leg(X,Y) =

(5.2) 9((LeAg)X,Y) =

for any vector fields X andY in the dlstnbutmn To, and if the structure
vector field is not principal and da(£)#0, then M is locally congruent
to a ruled real hypersurface.

Now, let My be an open subset of M consisting of points z at which
B(z)#0. By the assumption that £ is not principal, the set Mp is not
empty. In order to prove the theorem,it suffices to show that the equa-
tions (5.1) and (5.2) in Theorem C hold for any vector fields X and Y’
in Ty on Mp.

We consider first (3.3). By the assumption

9((LeA)X,Y) = B2g(X, ¢U)g(Y, U),
We get
g((Ad — dA)X,(Ad — dA)X) = Bg(X, gU)".

From this equation we can calculate the norm of (A¢ — ¢A)X + Bg(X
oU)¢, and we can easily obtain (A¢ — ¢A)X + B9(X, U )¢ = 0, X €Ty
This means that {5.1) holds on M,.

It is also seen that (5.1) is equivalent to

g(Led)X,Y) =0, X, YeTo.
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Using the property of the Lie derivative and the above equation we can
prove that (5.2) holds on My. In fact, by the direct calculation, we get

9((LeAd)X,Y)

=gl(LeA)pX, Y ) + g(A(Led)X,Y)

= B29(6X, 0U)g(Y.U) + g((Lee) X, AY)

= B9(6X, 0U)g(Y.U) + g((Led) X, (AY )e) + g( AY, )g((Le )X, €)
= B9(¢X,0U)g(Y,U) + Bg(Y, U)g((Le )X, €),

where (AY')o denotes the To-component of AY. Because of g((Le¢)X, £)

I

2.

w

-~

10.

11.

12.

13.

~Bg(X,U), we can prove (5.2).
This completes the proof of Theorem 2.
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