• Title/Summary/Keyword: KOH Etching

Search Result 121, Processing Time 0.025 seconds

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Characterization of Combined Micro- and Nano-structure Silicon Solar Cells using a POCl3 Doping Process

  • Jeong, Chaehwan;Kim, Changheon;Lee, Jonghwan;Yi, Junsin;Lim, Sangwoo;Lee, Suk-Ho
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.69-72
    • /
    • 2013
  • Combined nano- and micro-wires (CNMWs) Si arrays were prepared using PR patterning and silver-assisted electroless etching. A $POCl_3$ doping process was applied to the fabrication of CNMWs solar cells. KOH solution was used to remove bundles in CNMWs and the etching time was varied from 30 to 240 s. The lowest reflectance of 3.83% was obtained at KOH etching time of 30 s, but the highest carrier lifetime of $354{\mu}s$ was observed after the doping process at 60 s. At the same etching time, a $V_{oc}$ of 574 mV, $J_{sc}$ of $28.41mA/cm^2$, FF of 74.4%, and Eff. of 12.2% were achieved in the CNMWs solar cell. CNMWs solar cells have potential for higher efficiency by improving the post-process and surface-rear side structure.

Fabrication of (100), (110), (111) Si Tips using Various Wet Etching Method (다양한 습식식각법을 이용한 (100), (110), (111) Si tip의 제작)

  • Park, Heung-Woo;Ju, Byeong-Kwon;Ko, Chang-Gi;Hong, Soon-Kwan;Oh, Myoung-Hwan;Kim, Chui-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1250-1253
    • /
    • 1994
  • (100), (110) and (111) Si wafers are etched by isotropic etching method, anisotropic etching method using KOH etchant and EPW etchant and combined two-step etching method to compare the results. Isotopic etching method is effective in fabrication of wedge-shaped tips, especially (110) Si. Anisotropic etching method of (100) Si using EPW etchant can fabricate sharp cone-shaped tips and isotropic etching after anisotropic etching of (100) Si can fabricate wedge-shaped tips.

  • PDF

Anisotropic wet etching by IPA-KOH solutions (IPA-KOH 혼합액에 의한 습식 이방성식각 연구)

  • 천인호;조남인;김창교
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.185-193
    • /
    • 2000
  • 이방성 습식 식각을 이용하여 멤브레인을 제작하기 위하여 KOH-IPA의 식각액을 사용하여 단결정 실리콘 기판을 이방성으로 식각을 하고, 각 용액에 대한 식각 특성을 관찰하였다. 식각률은 식각액의 온도와 농도에 의존하며, 패턴 형성 방향과 식각액의 농도에 따라 식각 형태가 다르게 나타났다. 패턴은 Primary Flat에 45°로 기울여 형성되었으며 20wt·% KOH 80℃ 이상에서는 U-groove, 그 이하의 온도와 농도에서는 V-groove 식각 형태를 관찰할 수 있었다. 각 면에 대한 식각률 차이에 의해서 생기는 Hillock은 온도와 농도가 높아짐에 따라 줄어들었고, 재식각을 퉁하여 현저하게 줄어듦을 알 수 있었다.

Characteristics of Alpha Particle Track on Cellulose Nitrate Film (Cellulose Nitrate의 알파입자비적특성(粒子飛跡特性))

  • Do, Jin-Yeol;Jun, Jae-Shik;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.61-66
    • /
    • 1984
  • A study on the characteristics of ${\alpha}$-particle track on cellulose nitrate film was carried out with a particular emphasis on the dependence of track diameter upon chemical etching condition. The track diameters etched in KOH solution appeared to be, on average, three times larger than those etched in NaOH under the same etching condition. The relationship between the track diameters and both etching time and the energy of incident ${\alpha}$-particles was also investigated. It is shown that the particle fluence rate is fairly independent of etching time as far as the condition of irradiation remains unchanged.

  • PDF

Measurement of Oxygen by FTIR in Silicon wafer process steps (실리콘 웨이퍼 공정스텝에서 FTIR에 의한 산소의 측정)

  • 김동수;정원채
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.68-71
    • /
    • 2000
  • In this paper, we have measured the oxygen contents by FTIR in silicon wafer various process technology(slicing, lapping, polishing). The measured data are also compared with the data of etching process(KOH, Bright etching). Also we have measured the surface morpology in backside silicon wafer after etching treatment and etch pit density due to OISF after 4 step high temperature annealing process with optical microscope.

  • PDF

A study on wet etching for silicon membrane construction formation (실리콘 Membrane 구조 형성을 위한 Wet Etching에 관한 연구)

  • 김동수;정원채
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.237-240
    • /
    • 2001
  • In this paper, we have presented processing technique about wet etching for silicon membrane construction formation. In order to make selective etching of backside silicon wafer, we used Si$_3$N$_4$ layer by PECVD(Plasma Enhanced Chemical Vapor Deposition). We have measured the surface thickness in backside silicon wafer after anisortropic wet etching with KOH:distilled water solutions. Through this experiment, we acquired the etching rate for 1.29${\mu}{\textrm}{m}$/min. The average rough of Si-membrane frontside and backside was 0.26${\mu}{\textrm}{m}$, 0.90${\mu}{\textrm}{m}$, respectively.

  • PDF

The Improved Characteristics of Wet Anisotropic Etching of Si with Megasonic Wave (Megasonic wave를 이용한 실리콘 이방성 습식 식각의 특성 개선)

  • Che Woo-Seong;Suk Chang-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.81-86
    • /
    • 2004
  • A new method to improve the wet etching characteristics is described. The anisotropic wet-etching of (100) Si with megasonic wave has been studied in KOH solution. Etching characteristics of p-type (100) 6 inch Si have been explored with and without megasonic irradiation. It has been observed that megasonic irradiation improves the characteristics of wet etching such as an etch uniformity and surface roughness. The etching uniformity on the whole wafer with and without megasonic irradiation were less than ${\pm}1\%$ and more than $20\%$, respectively. The initial root-mean-square roughness($R_{rms}$) of single crystal silicon is 0.23 nm. It has been reported that the roughnesses with magnetic stirring and ultrasonic agitation were 566 nm and 66 nm, respectively. Comparing with the results, etching with megasonic irradiation achieved the Rrms of 1.7 nm on the surface after the $37{\mu}m$ of etching depth. Wet etching of silicon with megasonic irradiation can maintain nearly the original surface roughness after etching process. The results have verified that the megasonic irradiation is an effective way to improve the etching characteristics such as etch uniformity and surface roughness.

  • PDF

Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel (나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.