• Title/Summary/Keyword: K-Nearest Neighbor algorithm

Search Result 267, Processing Time 0.026 seconds

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

A Study on the Development of Tracking Algorithm for Shipborne Automatic Tracking Aids (선박자동추적장치(ATA)의 목표물 추적 알고리즘 개발에 관한 연구)

  • Kim Seok Jae;Koo Ja Yun;Yoon Su Weon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.13-21
    • /
    • 2003
  • Ships if 500 gross tonnage and upwards constructed on or after 1 July 2002 shall have an automatic tracking aids according to SOLAS V /19 but existing ships less than 10,000 gross tonnage constructed before 1 July 2002 have potential collision risks due to the lack of automatic plotting devices like as an ATA This paper aims to provide a homemade ATA by developing the tracking algorithm for ATA and to prevent collision incidents by distributing ATA system to coasters.

  • PDF

Technology of Location-Based Service for Mobile Tourism (모바일 관광을 위한 위치 기반 서비스 기술)

  • Lee, Geun-Sang;Kim, Ki-Jeong;Kim, Hyoung-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • This study developed the algorithm of location-based service for supplying the efficient tourism service to traveller using mobile device and applied it to the Jeonju HANOK village. First, the location service was advanced using algorithm coupling with GPS error range and travel speed in single line, and with GPS location and nearest neighbor method to line in multiple one. Also this study developed a program using DuraMap-Xr spatial engine for establishing topology to Node and Link in line automatically. And the foundation was prepared for improving travel convenience by programming location-based service technology to single and multiple lines based on Blackpoint-Xr mobile application engine.

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Development of methodology for daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의 기법 개발)

  • Jung, Jaewon;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • When simulating the daily rainfall amount by existing Markov Chain model, it is general to simulate the rainfall occurrence and to estimate the rainfall amount randomly from the distribution which is similar to the daily rainfall distribution characteristic using Monte Carlo simulation. At this time, there is a limitation that the characteristics of rainfall intensity and distribution by time according to the rainfall duration are not reflected in the results. In this study, 1-day, 2-day, 3-day, 4-day rainfall event are classified, and the rainfall amount is estimated by rainfall duration. In other words, the distributions of the total amount of rainfall event by the duration are set using the Kernel Density Estimation (KDE), the daily rainfall in each day are estimated from the distribution of each duration. Total rainfall amount determined for each event are divided into each daily rainfall considering the type of daily distribution of the rainfall event which has most similar rainfall amount of the observed rainfall using the k-Nearest Neighbor algorithm (KNN). This study is to develop the limitation of the existing rainfall estimation method, and it is expected that this results can use for the future rainfall estimation and as the primary data in water resource design.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm (영상 정규화 및 얼굴인식 알고리즘에 따른 거리별 얼굴인식 성능 분석)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2013
  • The surveillance system has been developed to be intelligent which can judge and cope by itself using human recognition technique. The existing face recognition is excellent at a short distance but recognition rate is reduced at a long distance. In this paper, we analyze the performance of face recognition according to interpolation and face recognition algorithm in face recognition using the multiple distance face images to training. we use the nearest neighbor, bilinear, bicubic, Lanczos3 interpolations to interpolate face image and PCA and LDA to face recognition. The experimental results show that LDA-based face recognition with bilinear interpolation provides performance in face recognition.

Region-Segmental Scheme in Local Normalization Process of Digital Image (디지털영상 국부정규화처리의 영역분할 구도)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.78-85
    • /
    • 2007
  • This paper presents a segmental scheme for regions-composed images in local normalization process. The scheme is based on local statistics computed through a moving window. The normalization algorithm uses linear or nonlinear functions to transfer the pixel distribution and the homogeneous affine of regions which is corrupted by additive noise. It adjusts the mean and standard deviation for nearest-neighbor interpoint distance between current and the normalized image signals and changes the segmentation performance according to local statistics and parameter variation adaptively. The performance of newly advanced local normalization algorithm is evaluated and compared to the performance of conventional normalization methods. Experimental results are presented to show the region segmentation properties of these approaches.

Robust Object Tracking based on Kernelized Correlation Filter with multiple scale scheme (다중 스케일 커널화 상관 필터를 이용한 견실한 객체 추적)

  • Yoon, Jun Han;Kim, Jin Heon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.810-815
    • /
    • 2018
  • The kernelized correlation filter algorithm yielded meaningful results in accuracy for object tracking. However, because of the use of a fixed size template, we could not cope with the scale change of the tracking object. In this paper, we propose a method to track objects by finding the best scale for each frame using correlation filtering response values in multi-scale using nearest neighbor interpolation and Gaussian normalization. The scale values of the next frame are updated using the optimal scale value of the previous frame and the optimal scale value of the next frame is found again. For the accuracy comparison, the validity of the proposed method is verified by using the VOT2014 data used in the existing kernelized correlation filter algorithm.

Machine Learning Algorithms for Predicting Anxiety and Depression (불안과 우울 예측을 위한 기계학습 알고리즘)

  • Kang, Yun-Jeong;Lee, Min-Hye;Park, Hyuk-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.207-209
    • /
    • 2022
  • In the IoT environment, it is possible to collect life pattern data by recognizing human physical activity from smart devices. In this paper, the proposed model consists of a prediction stage and a recommendation stage. The prediction stage predicts the scale of anxiety and depression by using logistic regression and k-nearest neighbor algorithm through machine learning on the dataset collected from life pattern data. In the recommendation step, if the symptoms of anxiety and depression are classified, the principal component analysis algorithm is applied to recommend food and light exercise that can improve them. It is expected that the proposed anxiety/depression prediction and food/exercise recommendations will have a ripple effect on improving the quality of life of individuals.

  • PDF