• Title/Summary/Keyword: K$\ddot{a}$hler

Search Result 56, Processing Time 0.021 seconds

CURVATURE HOMOGENEITY AND BALL-HOMOGENEITY ON ALMOST COKӒHLER 3-MANIFOLDS

  • Wang, Yaning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.253-263
    • /
    • 2019
  • Let M be a curvature homogeneous or ball-homogeneous non-$coK{\ddot{a}}hler$ almost $coK{\ddot{a}}hler$ 3-manifold. In this paper, we prove that M is locally isometric to a unimodular Lie group if and only if the Reeb vector field ${\xi}$ is an eigenvector field of the Ricci operator. To extend this result, we prove that M is homogeneous if and only if it satisfies ${\nabla}_{\xi}h=2f{\phi}h$, $f{\in}{\mathbb{R}}$.

ON THE NORMAL BUNDLE OF A SUBMANIFOLD IN A KÄHLER MANIFOLD

  • Bang, Keumseong
    • Korean Journal of Mathematics
    • /
    • v.5 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • We show that the normal bundle of a Lagrangian submanifold in a K$\ddot{a}$hler manifold has a symplectic structure and provide the equivalent conditions for the normal bundle of such to be K$\ddot{a}$hler.

  • PDF

A NOTE ON SCALAR CURVATURE FUNCTIONS OF ALMOST-KÄHLER METRICS

  • Kim, Jongsu
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • We present a 4-dimensional nil-manifold as the first example of a closed non-K$\ddot{a}$hlerian symplectic manifold with the following property: a function is the scalar curvature of some almost K$\ddot{a}$hler metric iff it is negative somewhere. This is motivated by the Kazdan-Warner's work on classifying smooth closed manifolds according to the possible scalar curvature functions.

F-TRACELESS COMPONENT OF THE CONFORMAL CURVATURE TENSOR ON KÄHLER MANIFOLD

  • Funabashi, Shoichi;Kim, Hang-Sook;Kim, Young-Mi;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.795-806
    • /
    • 2007
  • We investigate F-traceless component of the conformal curvature tensor defined by (3.6) in $K\ddot{a}hler$ manifolds of dimension ${\geq}4$, and show that the F-traceless component is invariant under concircular change. In particular, we determine $K\ddot{a}hler$ manifolds with parallel F-traceless component and improve some theorems, provided in the previous paper([2]), which are concerned with the traceless component of the conformal curvature tensor and the spectrum of the Laplacian acting on $p(0{\leq}p{\leq}2)$-forms on the manifold by using the F-traceless component.

Numerical Analysis of Characteristics of Cellular Counterflow Diffusion Flames near Radiative Extinction Limit (복사 열손실에 의한 소염근처에서 셀모양 대향류 확산화염의 특성에 대한 수치해석)

  • Lee, Su Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • Nonlinear characteristics of cellular counterflow diffusion flame near the radiative extinction limit at large Damk$\ddot{o}$hler number are numerically investigated. Lewis number is assumed to be 0.5 and flame evolution is calculated by imposing an infinitesimal disturbance to a one-dimensional(1-D) steady state flame. The early stage of nonlinear development is very similar to that predicted in a linear stability analysis. The disturbance with the wavenumber of the fastest growing mode emerges and grows gradually. Eventual, an alternating pattern of reacting and quenching stripes is developed. The cellular flame temperature is higher than that of 1-D flame because of the gain of the total enthalpy. As the Damk$\ddot{o}$hler number is further increased, the shape of the cell becomes circular to increase the surface area per unit reacting volume. The cellular flames do not extinguish but survive even above the 1-D steady state extinction condition.

SCALAR CURVATURE FUNCTIONS OF ALMOST-KÄHLER METRICS ON A CLOSED SOLV-MANIFOLD

  • Kang, Yutae;Kim, Jongsu
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.473-481
    • /
    • 2013
  • We discuss on the classification problem of symplectic manifolds into three families according to the scalar curvature functions of almost K$\ddot{a}$hler metrics they admit. We also present a 4-dimensional solv-manifold as an example which belongs to one of the three families.

CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM

  • Kim, Hyang Sook;Pak, Jin Suk
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.147-161
    • /
    • 2013
  • In this paper we determine certain class of $n$-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic K$\ddot{a}$hler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3-structure.

ON EINSTEIN HERMITIAN MANIFOLDS II

  • Kim, Jae-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.289-294
    • /
    • 2009
  • We show that on a Hermitian surface M, if M is weakly *-Einstein and has J-invariant Ricci tensor then M is Einstein, and vice versa. As a consequence, we obtain that a compact *-Einstein Hermitian surface with J-invariant Ricci tensor is $K{\ddot{a}}hler$. In contrast with the 4- dimensional case, we show that there exists a compact Einstein Hermitian (4n + 2)-dimensional manifold which is not weakly *-Einstein.

A SIMPLY CONNECTED MANIFOLD WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES WITH DISTINCT SIGNS OF SCALAR CURVATURES

  • Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.549-554
    • /
    • 2014
  • We present a smooth simply connected closed eight dimensional manifold with distinct symplectic deformation equivalence classes [[${\omega}_i$]], i = 1, 2 such that the symplectic Z invariant, which is defined in terms of the scalar curvatures of almost K$\ddot{a}$hler metrics in [5], satisfies $Z(M,[[{\omega}_1]])={\infty}$ and $Z(M,[[{\omega}_2]])$ < 0.