• Title/Summary/Keyword: Joint inversion

Search Result 107, Processing Time 0.026 seconds

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Analysis of Biomechanical Effect of the Subtalar Sling Ankle Taping (거골하 관절 현수 테이핑의 생체 역학적 효과 분석)

  • Choi, Mun-Suk;Jeon, Hye-Seon;Kim, Young-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2007
  • The purpose of this study was to identify the effect of the subtalar sling ankle taping, by measuring changes in peak plantar pressure and subtalar angle during jump landing and walking in healthy subjects with subtalar sling ankle taping applied of the ankle joint. Fifty healthy subjects(8 males and 7 female, aged 22 to 25) were randomly divided into a participated in this study. They were free of musculoskeletal injury and neurologic deficit in lower extremity. The subjects were asked to perform 5M walking and single leg jump landing by under the guidance of physical therapists. Subtalar motions were typically measured as the angle made between the posterior aspect of the calcaneous and the posterior aspect of the lower leg during walking with taping or not. This measurement were made using a video system (30Hz sampling rate, rectified 60 Hz sampling rate). At the same time, peak lateral and vertical pressure were investigated using pressure distribution platforms(MatScan system) under foot during walking and single leg jump landing with taping or not. Statistical analysis was done by paired t-test and intraclass correlation coefficient [ICC(3.1)], using software SPSS. We have recently demonstrated significantly altered patterns of subtalr joint and peak plantar pressure when applied subtalar sling ankle taping(p<.05). Inversion angle of subtalar joint significantly decreased with taping(p<.05). The result suggest that pressure patterns observed in subjects are likely to result due to significant decrease in stress on ankle joint structures during jump landing and walking. Also, the result that the subtalar sling ankle taping procedure provides greater restiction of motion associated with ankle inversion. However, this study involved asymptomatic subjects without history of ankle inversion injury, further research is needed to assess the motion restraining effect of the subtalar sling ankle taping in subjects with lateral ankle instability.

Effective Estimation of Porosity and Fluid Saturation using Joint Inversion Result of Seismic and Electromagnetic Data (탄성파탐사와 전자탐사 자료의 복합역산 결과를 이용한 효과적인 공극률 및 유체포화율의 추정)

  • Jeong, Soocheol;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2015
  • Petrophysical parameters such as porosity and fluid saturation which provide useful information for reservoir characterization could be estimated by rock physics model (RPM) using seismic velocity and resistivity. Therefore, accurate P-wave velocity and resistivity information have to be obtained for successful estimation of the petrophysical parameters. Compared with the individual inversion of electromagnetic (EM) or seismic data, the joint inversion using both EM and seismic data together can reduce the uncertainty and gives the opportunity to use the advantages of each data. Thus, more reliable petrophysical properties could be estimated through the joint inversion. In this paper, for the successful estimation of petrophysical parameters, we proposed an effective method which applies a grid-search method to find the porosity and fluid saturation. The relations of porosity and fluid saturation with P-wave velocity and resistivity were expressed by using RPM and the improved resistivity distribution used to this study was obtained by joint inversion of seismic and EM data. When the proposed method was applied to the synthetic data which were simulated for subsea reservoir exploration, reliable petrophysical parameters were obtained. The results indicate that the proposed method can be applied for detecting a reservoir and calculating the accurate oil and gas reserves.

The Relationship between Strength Balance and Joint Position Sense Related to Ankle Joint in Healthy Women (정상 성인 여성의 발목관절에서 근력 균형과 관절위치감각의 상관관계)

  • Ko, Yu-Min;Jung, Mi-Suk;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2011
  • Purpose: The purpose of this study was to determine whether there is a relationship between strength balance and joint position sense related to the ankle joint in healthy women. Methods: Twenty-six healthy women were recruited. Isokinetic strength and joint position sense (JPS) were measured using a Biodex System 4 pro Dynamometer and a Biodex Advantage Software Package. Prior to measuring the JPS and isokinetic strength, the dominant foot was determined according to the Waterloo Footedness Questionnaire. After the JPS test, isokinetic strength was evaluated in velocity $60^{\circ}s$, including practice trial ($90^{\circ}s$). Using the measured isokinetic strength, a Strength Balance Index (SBI) was calculated. Results: Relative to the SBI, the degree of imbalance was varied; but there were imbalances. For each starting position, JPS error showed no significant differences (p>0.05). The relationship between SBI and JPS was found during the inversion to eversion process, eversion to inversion, and dorsi flexion to plantar flexion. Conclusion: There are moderate to mild relationships between JPS and SBI during ankle movement. It is suggested that to prevent ankle injuries, strength balance should be considered along with the other potential factors including anatomical alignment, proprioception, and soft tissues problems.

The effect of the stair heights on lower extremity joint moment in stair-ascent activity (계단 오르기 동작시 계단 높이에 따른 하지 관절 모멘트의 변화 분석)

  • Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.121-137
    • /
    • 2003
  • The purpose of this study was to investigate the effect of the stair heights on lower extremity joint moment in stair-ascent activity Data were collected by 3-D cinematography, force platform. six normal males were participated in this experiment. All subjects performed a stair-ascent in four different heights of stairs (10, 14, 18, 22cm) having a 5 step staircase. The moment of lower extremity joint was analyzed during stance phase. The results were as follows: First, the second increase of plantar flexion moment of ankle joint in the 'forward continuance' phase was not occurred for stair A and B. But it occurred for stair C and D. And the maximum plantar flexion moment increased as the stair height become higher. Second, it was shown that the maximum inversion moment of the ankle joint was the smallest at stair B and it increased significantly at stair C. Third, maximum extension moment appeared in the 'pull-up' phase. And it increased as the stair height become higher. Fourth, it was shown that the maximum abduction moment of the knee joint was the smallest at stair C and it increased significantly at stair C. Fifth, maximum extension moment of hip joint increased significantly at stair C. Sixth, remarkable value of adduction moment occurred at hip joints and maximum adduction moment increased at stair D.

The Effect of Total Contact Inserts on the Gait Parameters During High-Heeled Shoes Walking (높은 굽 신발 보행 시 전면 접촉인솔이 보행 변수에 미치는 영향)

  • Moon, Gon-Sung;Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • The purpose of this study was to investigate the effect of high heeled shoes with the total contact insert (TCI) on the frontal plane of the joints for the lower extremity during the gait. Ten healthy females voluntarily participated in this study and the height of the high heeled shoes was 7 cm. A three-dimensional motion analysis system (VICON) and force plates were used to analyze the movements of the joints for the lower extremities. The results were as follows: There were no significant differences for the angle value on the event of the gait cycle in the maximum eversion and inversion of the ankle joint, the varus and valgus of the knee joint, and the adduction and abduction of the hip joint (p>.05). But, there was a significant difference or the range of motion in the ankle joint (p<.05). The value of ankle and knee moment with a TCI was less than the value for no TCI. And there were significant differences for the moment value of the maximum inversion and eversion on the ankle joint and for the maximum varus and valgus on the knee joint (p<.05). Therefore, a TCI would be effective in stabilizing the joints of the lower extremities and increasing the balance of a body to reduce the injure from a fall during the gait.

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data (복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가)

  • Choi, Yeonjin;Chung, Woo-Keen;Ha, Jiho;Shin, Sung-ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers (퇴적층들의 전단파 속도 평가를 위한 수신함수와 표면파 위상 속도의 통합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • In this study, we propose a joint inversion method, using genetic algorithms, to determine the shear-wave velocity structure of deep sedimentary layers from receiver functions and surface-wave phase velocity. Numerical experiments with synthetic data indicate that the proposed method can avoid the trade-off between shear-wave velocity and thickness that arises when inverting the receiver function only, and the uncertainty in deep structure from surface-wave phase velocity inversion alone. We apply the method to receiver functions obtained from earthquake records with epicentral distances of about 100 km, and Rayleigh-wave phase velocities obtained from a microtremor array survey in the Kanto Plain, Japan. The estimated subsurface structure is in good agreement with the previous results of seismic refraction surveys and deep borehole data.

A Study on Geoelectrical Structure of Jeju Island Using 3D MT Inversion of 2D Profile Data (2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구)

  • Choi, Ji-Hyang;Kim, Hee-Joon;Nam, Myung-Jin;Lee, Tae-Jong;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Traditional two-dimensional (2D) interpretation of magnetotelluric (MT) data utilizes only transverse magnetic (TM)-mode data, because 2D inversion of transverse electric (TE)-mode data results in spurious features when 3D structures exist in the subsurface. The application of a 3D inversion algorithm to a single MT profile can reduce contamination due to off-profile anomalies and help us to incorporate TE-mode data in the interpretation. In this study, we conduct 2D and 3D inversions of MT data observed along two lines in Jeju Island. First, we invert apparent resistivities and phases in the TM and TE modes separately. Then, we perform 2D joint inversion of both TM- and TE-mode data and 3D inversion of both Zxy- and Zyx-mode data corresponding to TE- and TM-mode data in 2D. The resistivity images derived from all four data show that the geoelectrical structure in Jeju Island is a three-layered earth with the resistive-conductive-resistive stratigraphy within a depth of 5 km. The 3D inversion does not produce clear anomalies in the reconstructed profile image, while all of 2D do. This attributed to the possibility that 2D inversion results are distorted by exiting off-profile 3D anomalies in Jeju. With 3D inversion of 2D profile MT data, we can deduce more reliable results that are not seriously distorted by off-profile 3D anomalies.

Regularized Channel Inversion for Multiple-Antenna Users in Multiuser MIMO Downlink (다중 안테나 다중 사용자 하향 링크 환경에서 Regularized Channel Inversion 기법)

  • Lee, Heun-Chul;Lee, Kwang-Won;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.260-268
    • /
    • 2010
  • Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper, we extend the regularized channel inversion technique developed for the single-antenna user case to multiuser multiple-input multiple-output (MIMO) channels with multiple-antenna users. We first employ the multiuser preprocessing to project the multiuser signals near the null space of the unintended users based on the MMSE criterion, and then the single-user preprocessing is applied to the decomposed MIMO interference channels. In order to reduce the complexity, we focus on non-iterative solutions for the multiuser transmit beamforming and use a linear receiver based on an MMSE criterion. Simulation results show that the proposed scheme outperforms existing joint iterative algorithms in most multiuser configurations.