Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers

퇴적층들의 전단파 속도 평가를 위한 수신함수와 표면파 위상 속도의 통합 역산

  • ;
  • 산중호명 (토쿄공업대학 종합이공학연구과)
  • Published : 2006.02.28

Abstract

In this study, we propose a joint inversion method, using genetic algorithms, to determine the shear-wave velocity structure of deep sedimentary layers from receiver functions and surface-wave phase velocity. Numerical experiments with synthetic data indicate that the proposed method can avoid the trade-off between shear-wave velocity and thickness that arises when inverting the receiver function only, and the uncertainty in deep structure from surface-wave phase velocity inversion alone. We apply the method to receiver functions obtained from earthquake records with epicentral distances of about 100 km, and Rayleigh-wave phase velocities obtained from a microtremor array survey in the Kanto Plain, Japan. The estimated subsurface structure is in good agreement with the previous results of seismic refraction surveys and deep borehole data.

이 연구에서는 유전자 알고리듬을 이용하여 수진기 함수와 표면파 위상 속도로부터 심부 퇴적층의 전단파 속도 구조를 결정하는 복합역산 방법을 제시하였다. 합성 탄성파 자료를 이용한 수치모형실험은 제시된 방법이 단지 수진기 함수만을 역산했을 때 발생하는 전단파 속도와 층 두께 사이의 trade-off와, 표면파 위상 속도만을 역산했을 때 심부구조에서의 불확실성을 피할 수 있음을 보여주고 있다 이 방법은 진앙거리 100km의 지진기록으로부터 얻은 수진기 함수들과 일본 Kanto 평원의 상시진동 배열 탐사로부터 얻은 레일리파의 위상속도에 적용되었으며, 추정된 심부구조는 선행된 굴절법 탐사 결과 및 심부 시추공 자료와 잘 일치하였다.

Keywords

References

  1. Ammon, C.J., Randall G.R, and Zandt, G., 1990, On the nonuniqueness of receiver function inversion: Journal of Geophysical Research, 95, 15303-15318 https://doi.org/10.1029/JB095iB10p15303
  2. Darbyshire, F.A, Priestley, K.F., White RS., Stefansson, R., Gudmundsson G.B., and Jakobsdottir, S.S., 2000, Crustal structure of central and northern Iceland from analysis of teleseismic receiver functions: Geophysical Journal International, 143, 163-184 https://doi.org/10.1046/j.1365-246x.2000.00224.x
  3. Haskell, N.A., 1960, The dispersion of surface waves in multilayered media: Bulletin of the Seismological Society of America, 50, 657-679
  4. Haskell, N.A., 1962, Crustal reflection of plane P and SV waves: Journal of Geophysical Research, 67, 4751-4767 https://doi.org/10.1029/JZ067i012p04751
  5. Horike, M., 1985, Inversion of phase velocity of long-period microtremors to the S wave velocity structure down to the basement in urbanized areas: Journal of Physics of the Earth, 33, 59-96 https://doi.org/10.4294/jpe1952.33.59
  6. Julia, J., Ammon, C.J., Herrmann, R.B., and Correig, A.M., 2000, Joint inversion of receiver function and surface wave dispersion observations: Geophysical Journal International, 143, 99-112 https://doi.org/10.1046/j.1365-246x.2000.00217.x
  7. Kagawa, T, Sawada, S., Iwasaki, Y, and Nanjo, A, 1998, Svwave velocity structure model of the Osaka sedimentary basin from microtremor array observations: Journal of the Seismological Society of Japan (Zisin), 51, 31-40
  8. Kitsunezaki, C, Goto, N., Kobayashi, Y, Ikawa, T, Horike, M., Saito, T, Kurota, T, Yamane, K., and Okuzumi, K., 1990, Estimation of P- and S- wave velocities in deep soil deposits for evaluating ground vibrations in earthquake: Journal of the Japan Society for Natural Disaster Science, 9, 1-17
  9. Kobayashi, K., Uetake, T, Mashimo, M., and Kobayashi, H., 1998, An investigation on detection method of P to S converted waves for estimating deep underground structures: Journal of Structural and Construction Engineering, Architectural Institute of Japan, 505, 45-52
  10. Koketsu, K., 1995, Underground structure in the Tokyo metropolitan area: Geophysical Exploration (Butsuri-Tansa), 48, 504-518
  11. Langston, CA, 1979, Structure under Mount Rainier, Washington, inferred from teleseismic body waves: Journal of Geophysical Research, 84, 4749-4762 https://doi.org/10.1029/JB084iB09p04749
  12. Last, RJ., Nyblade, A.A., Langston, C.A., and Owens, TJ., 1997, Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities: Journal of Geophysical Research, 102, 24469-24483 https://doi.org/10.1029/97JB02156
  13. Lomax, A., and Snieder, R., 1994, Finding of acceptable solutions with a genetic algorithm with application of surface wave group velocity dispersion in Europe: Geophysical Research Letters, 21, 2617-2620 https://doi.org/10.1029/94GL02635
  14. Okada, H., 2003, The microtremor survey method: Society of Exploration Geophysicists
  15. Owens, T.J., Zandt, G., and Taylor, S.R., 1984, Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms: Journal of Geophysical Research, 89, 7783-7795 https://doi.org/10.1029/JB089iB09p07783
  16. Priestley, K.E, Zandt, G., and Randall, G.E., 1988, Crustal structure in Eastern Kazakh, U.S.S.RJrom teleseismic receiver function: Geophysical Research Letters, 15, 613-616 https://doi.org/10.1029/GL015i006p00613
  17. Sambridge, M., and Drijkoningen, G., 1992, Genetic algorithms in seismic waveform inversion: Geophysical Journal International, 109, 323-342 https://doi.org/10.1111/j.1365-246X.1992.tb00100.x
  18. Sambridge, M., and Gallagher, K., 1993, Earthquake hypocenter location using genetic algorithms: Bulletin of the Seismological Society of America, 83, 1467-1491
  19. Shibutani, T, Sambridge, M., and Kennett, B., 1996, Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath Eastern Australia: Geophysical Research Letters, 23,1829-1832 https://doi.org/10.1029/96GL01671
  20. Shima, E., Yanagisawa, M., Kudo, K., Seo, K., and Yamazaki, K., 1976, On the base rock of Tokyo 2, Observation of seismic waves generated from the 3rd Yumenoshima and Yoshikawa explosions: Bulletin of the Earthquake Research Institute, 51, 45-61
  21. Suzuki, H., 1999, Deep geological structure and seismic activity in the Tokyo metropolitan area: Journal of Geography, 108, 336-339 https://doi.org/10.5026/jgeography.108.336
  22. Vozoff, K and Jupp, D.L.B., 1974, Joint inversion of geophysical data: Geophysical Journal of the Royal Astronomical Society, 42, 977-991
  23. Yamanaka, H., Furuya, S., Nozawa, T, Sasaki T, and Takai, T, 1995, Array measurements of long-period microtremors in the Kanto Plain -Estimation of S-wave velocity structure at Koto-: Journal of Structural and Construction Engineering, Architectural Institute of Japan, 478, 99-105
  24. Yamanaka, H., and Ishida, H., 1996, Application of genetic algorithms to an inversion of surface-wave dispersion data: Bulletin of the Seismological Society of America, 86,436-444
  25. Yamanaka, H., and Yamada, N., 2002, Estimation of 3D S-wave velocity model of deep sedimentary layers in Kanto plain, Japan, using microtremor array measurements: Geophysical Exploration (Butsuri-Tansa}, 55, 53-65
  26. Zhao, L.-S., Sen, M.K., Stoffa, PL., and Frohlich, c., 1996, Application of very fast simulated annealing to the determination of the crustal structure beneath Tibet: Geophysical Journal International, 125, 355-370 https://doi.org/10.1111/j.1365-246X.1996.tb00004.x
  27. Zhou, R., Tajima, E, and Stoffa, PL., 1995, Earthquake source parameter determination using genetic algorithm: Geophysical Research Letters, 22, 517-520 https://doi.org/10.1029/94GL03345