DOI QR코드

DOI QR Code

Effective Estimation of Porosity and Fluid Saturation using Joint Inversion Result of Seismic and Electromagnetic Data

탄성파탐사와 전자탐사 자료의 복합역산 결과를 이용한 효과적인 공극률 및 유체포화율의 추정

  • Jeong, Soocheol (Dept. of Natural Resources and Environmental Engineering, Hanyang Univ.) ;
  • Seol, Soon Jee (Dept. of Natural Resources and Environmental Engineering, Hanyang Univ.) ;
  • Byun, Joongmoo (Dept. of Natural Resources and Environmental Engineering, Hanyang Univ.)
  • 정수철 (한양대학교 자원환경공학과) ;
  • 설순지 (한양대학교 자원환경공학과) ;
  • 변중무 (한양대학교 자원환경공학과)
  • Received : 2015.04.22
  • Accepted : 2015.05.26
  • Published : 2015.05.30

Abstract

Petrophysical parameters such as porosity and fluid saturation which provide useful information for reservoir characterization could be estimated by rock physics model (RPM) using seismic velocity and resistivity. Therefore, accurate P-wave velocity and resistivity information have to be obtained for successful estimation of the petrophysical parameters. Compared with the individual inversion of electromagnetic (EM) or seismic data, the joint inversion using both EM and seismic data together can reduce the uncertainty and gives the opportunity to use the advantages of each data. Thus, more reliable petrophysical properties could be estimated through the joint inversion. In this paper, for the successful estimation of petrophysical parameters, we proposed an effective method which applies a grid-search method to find the porosity and fluid saturation. The relations of porosity and fluid saturation with P-wave velocity and resistivity were expressed by using RPM and the improved resistivity distribution used to this study was obtained by joint inversion of seismic and EM data. When the proposed method was applied to the synthetic data which were simulated for subsea reservoir exploration, reliable petrophysical parameters were obtained. The results indicate that the proposed method can be applied for detecting a reservoir and calculating the accurate oil and gas reserves.

매장량의 평가에 직접적인 정보를 제공해주는 저류층 변수들인 공극률과 유체포화율은 물리탐사방법을 통해 직접적으로 획득이 가능한 탄성파 속도나 전기비저항의 물성값을 암석물리모델 구성법에 적용하여 추정이 가능하다. 따라서, 정확한 저류층 변수들의 추정을 위해서는 우선적으로 정확한 속도나 전기비저항과 같은 물성값들의 추정이 필요하다. 이종의 물리탐사자료를 이용한 복합역산은 단일 물리탐사자료를 이용한 역산과 비교시, 역산의 불확실성을 줄일 수 있고, 두 탐사자료의 장점을 함께 이용할 수 있기 때문에 단일물리탐사자료에 비하여 보다 신뢰성있는 물성정보를 추정할 수 있다. 이 연구에서는 효율적인 공극률과 유체포화율의 분포를 추정하기 위하여, 탄성파탐사자료와 전자탐사자료의 복합역산을 통해서 지하의 속도 정보와 전기비저항 정보를 획득한 뒤, 이 두 물성을 모두 이용하여 암석물리모델을 구성하는 과정이 포함 된 격자탐색법(grid-search)을 제안하였다. 오일저류층 모델의 합성자료에 적용한 결과, 보다 신뢰성 있는 저류층 변수들을 추정하였으며, 이는 오일저류층의 정확한 매장 위치 추정과, 매장량 계산에 보다 정확한 정보를 제공해 줄 것으로 기대된다.

Keywords

References

  1. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Petroleum Transactions of AIME, 146, 54-62. https://doi.org/10.2118/942054-G
  2. Brown, R. and Korringa, J., 1975, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid, Geophysics, 40, 608-616. https://doi.org/10.1190/1.1440551
  3. Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75, 75A67-75A81. https://doi.org/10.1190/1.3483451
  4. Duffy, J. and Mindlin, R. D., 1957, Stress-strain relations and vibrations of a granular medium, J. of Applied Mechanics, 24, 585-593.
  5. Gallardo, L. A., Fontes, S. L., Meju, M. A., Buonora, M. P., and de Lugao, P. P., 2012, Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from Santos Basin offshore Brazil, Geophysics, 77, B237-B251. https://doi.org/10.1190/geo2011-0394.1
  6. Gao, G., Abubakar, A., and Habashy, T., 2010, Joint Inversion of Crosswell Electromagnetic and Seismic Data for Reservoir Petrophysical Parameters, SPE Annual Technical Conference and Exhibition, SPE 135307.
  7. Gao, G., Abubakar, A., and Habashy, T., 2012, Joint petrophysical inversion of electromagnetic and full-waveform seismic data, Geophysics, 77, WA3-WA18. https://doi.org/10.1190/geo2011-0157.1
  8. Gassmann, F., 1951, Uber die elastizitat poroser medien, Veirteljahrsschrift der Naturforschenden Gesellschaft in Zurich, No. 96, pp. 1-23.
  9. Harris, P., and MacGregor, L., 2006, Determination of reservoir properties from the integration of CSEM, seismic, and well-og data, First Break, 25, 53-59.
  10. Hoversten, G. M., Cassassuce, F., Gasperikova, E., Newman, G. A., Chen, J., Rubin, Y. , Hou, Z., and Vasco, D., 2006, Direct reservoir parameter estimation using joint inversion ofmarine seismicAVAand CSEM data, Geophysics, 71, C1-C13. https://doi.org/10.1190/1.2194510
  11. Hu, W., Abubakar, A., and Habashy, T. M., 2009, Joint electromagnetic and seismic inversion using structural constraints, Geophysics, 74, R99-R109. https://doi.org/10.1190/1.3246586
  12. Jeong, S., Byun, J., and Seol, S. J., 2014, Joint electromagnetic inversion with structure constraints using full-waveform inversion result, Jigu-Mulli-wa-Mulli-Tamsa, 17, 187-201.
  13. Joo, Y., Seol, S. J., and Byun, J., 2013, Acoustic full-waveform inversion of surface seismic data using the Gauss-Newton method with active constraint balancing, Geophysical Prospecting, 61, 166-182. https://doi.org/10.1111/j.1365-2478.2012.01112.x
  14. Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic), The Log Analyst, 31, 355-369.
  15. Kwon, T., Seol, S. J., and Byun, J., 2015, Efficient full-waveform inversion with normalized plane-wave data, Geophysical Journal International, 201, 53-60. https://doi.org/10.1093/gji/ggu498
  16. Moorkamp, M., Roberts, A. W., Jegen, M., Heincke, B., and Hobbs, R. W., 2013, Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data, Geophysical Research Letters, 40, 3596-3601. https://doi.org/10.1002/grl.50696
  17. Park, C., and Nam, M., J., 2014, A Review on Constructing Seismic Rock Physics Models Based on Gassmann's Equation for Reservoir Fluid Substitution, J. Korean Soc. Miner. Energy Resour. Eng., 51, 448-446.
  18. Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time-to-porosity transform, Trans. Soc. Prof. Well Log Analysts, 21st Annual Logging Symposium, pp. 1-12.
  19. Semerci, O., Pan, G., Li, M., Liang, L., and Habashy, T., 2014, Joint electromagnetic and seismic inversion for petrophysical parameters using multi-objective optimization, 84 Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 733-738.
  20. Tao, Y., and Sen, M. K., 2013, Frequency-domain full waveform inversion with plane-wave data: Geophysics, 78, R13-R23. https://doi.org/10.1190/geo2012-0267.1
  21. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
  22. Um, E., Commer, M., and Newman, G., 2014, A strategy for coupled 3D imaging of large-scale seismic and electromagnetic data sets: Application to subsalt imaging, Geophysics, 79, ID1-ID13. https://doi.org/10.1190/geo2013-0053.1
  23. Waxman, M. H., and Smits, M. J. L., 1968, Electrical conductivities in oilbearing shaly sands, SPE Journal, 8, 107-122. https://doi.org/10.2118/1863-A
  24. Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W., 1956, Elastic Wave Velocities in Heterogeneous and Porous Media, Geophysics, 21, 41-70. https://doi.org/10.1190/1.1438217