• Title/Summary/Keyword: Jindong Bay

Search Result 32, Processing Time 0.02 seconds

Characteristics of Marine Environment in Coastal Waters for Stationary Fisheries.- Physical and Chemical Environments (정치성구획어업 예정지의 해양학적 환경 특성 -물리.화학적 환경 특성-)

  • Lee Chung-Il;Park Sung-Eun;Lee Jae-Young;Cho Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.3 s.26
    • /
    • pp.171-177
    • /
    • 2006
  • To illustrate the characteristics of marine environment in coastal waters of stationary fisheries, field observations were carried out in August and November, 2001. Water temperatures in Jindong Bay compared with those in Masan Bay were about $2.0^{\circ}C$ higher in August and about $0.7^{\circ}C$ in November. Salinities were lowest in the western part of Jindong Bay. It was found that salinity increased gradually from the western part of Jindong Bay to Masan Bay. Sea water in Masan Bay can be characterised as lower temperature and higher salinity, compared with those in Jindong Bay. Concentrations of suspended solids in the inner parts of Jindong Bay were higher than 15mg/L in August. Suspended solids in both regions of Jindong Bay and Masan Bay showed contrastive distributions, especially in November. That is, higher concentrations of suspended solids were found in the inner parts of Jindong Bay and off Masan Bay. Concentration of chemical oxygen demand in Masan Bay was highest, 7mg/L.

  • PDF

Growth Dynamics and Carbon Incorporation of the Seagrass, Zostera marina L. in Jindong Bay and Gamak Bay on the Southern Coast of Korea (진동만과 가막만에 서식하는 잘피 개체군의 생장 동태 및 탄소고정량 추정)

  • Kim, Tae-Hwan;Rark, Sang-Rul;Kim, Young-Kyun;Kim, Jong-Hyeob;Kim, Seung-Hyeon;Kim, Jeong-Ha;Chung, Ik-Kyo;Lee, Kun-Seop
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.241-250
    • /
    • 2008
  • Since seagrasses in the coastal and estuarine ecosystems achieve high levels of production, they require high inorganic carbon and nutrient incorporation. Thus, seagrasses may play a significant role in carbon and nutrient cycling in the coastal and estuarine ecosystems. To examine growth dynamics of Zostera marina L. environmental factors such as underwater irradiance, water temperature, and salinity, and biological parameters such as shoot density, biomass, shoot morphology, and leaf productivity were measured in two bay systems (Jindong Bay and Gamak Bay) on the southern coast of Korea. While underwater irradiance did not show distinct seasonal trend, water temperature at both sites exhibited clear seasonal trend throughout the experimental period. Shoot density increased dramatically during winter due to the increased seedlings through germination of seeds in Jindong Bay and due to the increased lateral shoots in Gamak Bay. Eelgrass biomass increased during winter and decreased during summer. Maximum biomass in Jindong Bay and Gamak Bay was 250.2 and 232.3 g dry weight m–a2, respectively. Carbon incorporation into the eelgrass leaf tissues was estimated from productivity and leaf tissues carbon content. The calculated annual carbon incorporations at the Jindong Bay and Gamak Bay sites were 163 and 295 g C m–`2 y–`1, respectively. This high carbon incorporation into seagrass tissues suggests that seagrass habitats play an important role as a carbon absorber in the coastal and estuarine ecosystems.

Seasonal Variations in Species Composition and Abundance of Fish and Decapods in an Eelgrass (Zostera marina) Bed of Jindong Bay

  • Kwak, Seok-Nam;Park, Joo-Myun;Huh, Sung-Hoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.259-269
    • /
    • 2014
  • The objectives of this study to determine seasonal changes in species composition and abundance of fish and decapod assemblage, and the relationships between environmental factors and their abundance in an eelgrass bed of Jindong Bay. A total of 26 fish species and 29 decapod species were collected by a small beam trawl from an eelgrass bed in Jindong Bay in 2002. The dominant fish species were Hexagrammos otakii, Pholis neulosa and P. fangi and these accounted for 48.4 % in the total number of individuals. Dominant decapod taxa were Palaemon macrodactylus, Charybdis japonica, Pagurus minutus and C. bimaculata. These were primarily small species or early juveniles of larger species. Species composition and abundance varied greatly showing a peak in the number of individuals in April and May, and peak biomass in fish in July and decapods in August. Catch rate was low in winter months both in fish and in decapod. Seasonal changes in the abundance of fishes and decapods corresponded with eelgrass biomass and abundance of food organisms indirectly.

A method of environmental management using an ecological numerical model in Jindong Bay (진동만에서 생태계모델을 이용한 환경관리기법)

  • 김동선
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.345-358
    • /
    • 2003
  • Jindong bay at the northwestern part of Jinhae bay suffers from the occurrence of red tides in summer every year. In order to study the management methods of coastal environments, an ecological numerical model has been developed. The model experiments was forecasted that the load of nutrients from the land and field concentration will be cut down per 10% each. When we cut down 57.2% nitrogen load in the inner bay and 38.4% phosphorous load in the outer bay of bottom layer of the nutrients load from land and field concentration, the seawater quality standard levels up first grade. When we cut down 86.5% nutrients in the inner bay and 93.0% nutrients in the outer bay, the concentration of chlorophyll a decreases below 3.2 $\mu\textrm{g}$/(equation omitted)(an individual concentration of phytoplankton : 10,000cel1/ml), i.e. the red tides do not occur.

A Study on the Estimation of Conservation Value of Fisheries Resource Protected Area using CVM (수산자원보호구역의 보전 가치 추정에 관한 연구)

  • Kang, Seok-Kyu
    • The Journal of Fisheries Business Administration
    • /
    • v.48 no.2
    • /
    • pp.33-51
    • /
    • 2017
  • The purpose of this study is to estimate conservation value of fisheries resource protected area by the double-bounded dichotomous choice contingent valuation method. The data in this analysis come from a survey of respondents of resident in fisheries resource protected area using a proportional stratified sampling from the population. The questionnaires covered all the 5 fisheries resource protected area and the sample size of every protected area was 120 questionnaires. The survey period was from August to October in 2016. Above all, the average willingness to pay amount(WTP) per person of Namhae-Tongyoung I, Namhae-Tongyoung II, Jindong bay, Hansan bay, Cheonsu bay is estimated \6,215, \13,215, \6,405, \9,785, and \10,390 respectively. And, the total value of Namhae-Tongyoung I, Namhae-Tongyoung II, Jindong bay, Hansan bay, and Cheonsu bay is evaluated \108.8 billion, \357 billion, \118 billion, 210.2 billion, \ 245.8 billion respectively. Moreover, the yearly value of Namhae-Tongyoung I, Namhae-Tongyoung II, Jindong bay, Hansan bay, and Cheonsu bay is evaluated \6 billion, \19.6 billion, \6.5 billion, 11.6 billion, \ 13.5 billion. In conclusion, fisheries resource protected area has the higher conservational value. Consequently, it is essential for now or future generation's use of fisheries resources. In light of the fisheries resource protected area's value and importance, this should be promoted to the public including the local community who utilizes fisheries resource protected area wisely. Also, this suggests that the policy for fishery resource's creation and management is needed in fisheries resource protected area.

Mechanism of Oxygen-Deficient Water Formation in Jindong Bay (진동만의 빈산소수괴 형성기구)

  • 김동선;김상우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The influences of horizontal and vertical flow components including the stratification of water column and the wind field on the formation of oxygen-deficient water in summer in Jindong Bay, northern part of Chinhae Bay, were examined. Temperature, salinity and dissolved oxygen in seawater, and direction and velocity of wind were observed in Jindong Bay from March 1998 to February 1999. Low concentration of 5 mg/L in dissolved oxygen (DO) appeared at the bottom layer from May to September. Extremely low DO concentration less than 3 mg/L was investigated in summer (July to August) when stratification was strongest due to abrupt vertical gradients of temperature and salinity in water column. Bottom waters with the extremely low DO concentration were observed even in spring (May to June) at the inner part of the bay. In summer (August to September), the bottom waters with the low DO concentration (less than 5 mg/L) existed at the water depth from 4 to 6 m, being moved upward to the surface layer compared to other seasons. Vertical components of residual flow, calculated by the direction and velocity of wind, in Jindong Bay in summer showed that locally prevailed northerly and westerly wind resulted in downwelling flow at the outer part of the bay and conversely, upwelling at the inner part of the bay. In addition, bottom current at the outer part corresponding to the downwelling area directed to the inner part, probably resulting in a transport of the particulate organic matter settled at the bottom waters to the inner part of the bay. The oxygen-deficient watermass, which was formed at the bottom layer of the inner part, was likely to transported to the surface layer by the upwelling flow.

The Oceanic Environmental Property in the Jindong Bay of the Red-Tide Appearance Area (적조 다발 지역인 진동만의 해양환경 특성)

  • 김동선;조규대;박청길
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • We studied the appearance and proliferation of red tide organisms from March, 1998, to February, 1999, in the Jindong Bay. There were two red tide events during investigation, and we found that the dominant species Ceratium furca in May and Gymnodinium sanguineum in September, 1998. At surface, temperature and salinity showed 18.3~19.7$^{\circ}C$ and 30.6~30.9 psu in May and 25.6~27.$0^{\circ}C$, 28.0~28.5 psu in September, respectively. When the red tide occurred, the water mass stable. Dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphate(DIP) in Jindong Bay showed seasonal variability. In May, the nitrogen was a limited nutrient in which the ratio of DIN versus DIP was less than 16 (Redfield ratio), while in September phosphate. During June to September, 1998, phosphate acted as a limited nutrient due to the increased river run-off from land. In May, chlorophyll-a, dissolved oxygen(DO) and chemical oxygen demand(COD) showed higher than 20$\mu\textrm{g}$/$\ell$, 10mg/$\ell$ and 5.0mg/$\ell$, respectively. In September, they showed in turns 100$\mu\textrm{g}$/$\ell$, 10mg/$\ell$ and 10mg/$\ell$, respectively.

  • PDF

Nutrient Variations in the Jindong Bay during Summer by Ecosystem Modeling (해양생태계모델에 의한 하계 진동만의 영양염변동)

  • 김동선;홍철훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.164-176
    • /
    • 2003
  • During summer, the DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphate) observed in the Jindong Bay in the southern sea of Korea show much higher values in the inner area of the bay. In general, they have high values in the upper (0-1 m) and lower layers (8 m-bottom), but are relatively lower in the middle layer (1-8 m). These features in their distribution are examined using an ecosystem model with considering the wind, tidal current, horizontal gradient of water density and residual flow. The experiments were focused on how to influence nutrients associated with these conditions. In the experiment with tide-induced residual flow, the values of nutrients appeared lower than the observation, and were well corresponded to it when the effects of wind, tide-induced residual current and horizontal gradient of water density were additionally imposed. A statistical analysis identifies these results. This paper suggests that variation of nutrient in the Jindong Bay during summer should be seriously a(footed wind-driven current by the wind and density-driven current is induced by the horizontal gradient of water density as well as tidal current.

Selection of the Optimal Transplanting Method and Time for Restoration of Zostera marina Habitats (잘피(Zostera marina)서식지 복원을 위한 최적 이식방법 및 시기 선정에 관한 연구)

  • Park, Jung-Im;Kim, Young-Kyun;Park, Sang-Rul;Kim, Jong-Hyeob;Kim, Young-Sang;Kim, Jeong-Bae;Lee, Pil-Yong;Kang, Chang-Keun;Lee, Kun-Seop
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.379-388
    • /
    • 2005
  • Seagrass bed is an important component in coastal and estuarine ecosystems, providing food and shelter to a wide variety of fauna. Recently, seagrass coverage has declined significantly due to anthropogenic influences such as reclamation, dredging, and eutrophication and consequently, necessity of seagrass habitat restoration is rising. Transplantation experiments with Zostera marina using TERFS, staple method, and shell method have been conducted at Dadae Bay, Kosung Bay and Jindong Bay on the south coast of Korea to select an optimal transplanting method for restoration of Z. marina habitat. Three experimental sites located at the vicinity of natural Z. marina beds with an average water depth of about 4m. Z. marina plants, which were collected from donor bed in Koje Bay were also transplanted at 7 different time from October 2003 to July 2004 to find appropriate transplanting time. Density of Z. marina was monitored monthly at both transplanted areas and natural beds. Transplantation using the staple method showed the highest survival rate of transplant. Shell method was also an effective transplanting method at muddy areas in Kosung Bay and Jindong Bay, but not suitable at sandy areas in Dadae Bay. These results suggest that sediment composition of transplanting areas should be considered for the selection of the optimal transplanting method. Z. marina transplanted during fall usually showed the highest survival rate, while most Z. marina plants transplanted in summer died due to high lethal temperature during this period.