• Title/Summary/Keyword: Jacobian 행렬

Search Result 59, Processing Time 0.021 seconds

Kinematic Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 기구학적 조작성 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.

A Fast Sensitivity Matrix Update Technique for Accurate Contingency Analysis State Computation Technique in Power Systems (정확한 상정사고 분석을 위한 민감도 행렬의 신속한 Update 기법에 관한 연구)

  • Lee, Seung-Chul;Kim, Kyoung-Shin;Kwon, Byong-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.327-329
    • /
    • 2001
  • This paper presents a fast and accurate contingency analysis in EHV systems for line outages, loss of generation of redispatching and loss-of-load or load management. Unlike other contingencies, line outage requires the modification of the Jacobian of the base case power flow and the calculation of its new inverse, which is substantially different from the original inverse. In this paper, we obtain the inverse of the new Jacobian from the original inverse without repeating the time consuming matrix inversion process. Numerical test results show the significant improvement in the accuracies compared with those obtained using the original inverse.

  • PDF

A Solution to the Inverse Kinematic by Using Neural Network (신경 회로망을 사용한 역운동학 해)

  • 안덕환;양태규;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.295-300
    • /
    • 1990
  • Inverse kinematic problem is a crucial point for robot manipulator control. In this paper, to implement the Jacobian control technique we used the Hopfield, Tank's neural network. The states of neurons represent joint velocities, and the connection weights are determined from the current value of the Jacobian matirx. The network energy function is constructed so that its minimum corresponds to the minimum least square error. At each sampling time, connection weights and neuron states are updated according to current joint positon. Inverse kinematic solution to the planar redundant manipulator is solved by computer simulation.

  • PDF

Manipulability Analysis of a Parallel Machine Tool: Application to Optimal Link Parameters Design (병렬형 공작기계의 조작성 해석: 기구부 최적설계에 적용)

  • Kim, Jeom-Goo;Hong, Keum-Shik;Park, Frank-C.;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.213-223
    • /
    • 1999
  • In this paper, input-output transmission characteristics of the Eclipse, which is a parallel machine tool capable of 5 face rapid machining, are investigated. By splitting the weighted Jacobian matrix into two parts, the force and moment transmission characteristics together with the velocity and angular velocity transmission characteristics are analyzed. A new manipulability measure, which combines the volume of the manipulability ellipsoid and the condition number of the splitted Jcobian matrix, is proposed. Two link parameters, the ratio of upper and lower platforms' radii and the length of a supporting link of the Eclipse, are designed by applying the new manipulability measure derived. Computer simulations are provided.

  • PDF

One-dimensional Inversion of Electromagnetic Frequency Sounding Data (주파수 수직 전자탐사 자료의 1차원 역산)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.180-186
    • /
    • 2003
  • We have developed an one-dimensional (ID) inversion program that can invert multiple frequency small-loop EM data from horizontal coplanar (HCP) and vertical coplanar (VCP) configurations. The inverse problem is solved using least-squares method with active constraint balancing (ACB) method and Jacobian matrix is calculated analytically. Tests using synthetic data from simple ID models indicate that conductivity and depth of each layer can be estimated properly when both real and imaginary data are used together.

Some Properties on Jacobian Matrix (전력조류방정식과 자코비안 행렬의 성질에 대하여)

  • Lee, Sang-Joong;Yang, Seong-Deog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.251-253
    • /
    • 2004
  • Though the reference angle has been specified conventionally on the slack bus, it can be specified on my bus in the system without changing power flow solutions. This paper describes that the loss sensitivity of the salk bus can be obtained through an angle reference transposition. A concept of two reference buses, consisting of "power slack bus"

  • PDF

Kinematics of an Intrinsic Continuum Robot with Pneumatic Artificial Muscles (공압인공근육을 가진 내부형 연속체로봇의 기구식)

  • Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.289-296
    • /
    • 2016
  • This study presents the kinematics of an intrinsic continuum robot actuated by pneumatic artificial muscles. The single section of a developed continuum robot consisted of three muscles in parallel. The contraction of each muscle according to applied air pressure produced spatial motions of a distal plate with respect to a base plate. Based on the bending behaviors of artificial muscles, the orientation and position of the end-effector of a continuum robot were formulated using a transformation matrix. The orientation and position was also determined for a single section of the distal plate. A Jacobian matrix relating the contraction rate or the pressure rate of the muscles to the velocity vector of the end-effector was calculated considering the assembled position of actuators between neighboring sections of the robot. Experimental results showed that the motions of the intrinsic continuum robot were accurately estimated by the proposed kinematics.

DSP Implementation of The Position Location System in Underwater Channel Environments (수중환경에서 위치추적 시스템의 DSP 구현)

  • Ko, Hak-Lim;Lim, Yong-Kon;Lee, Deok-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.48-54
    • /
    • 2007
  • In this paper we have implemented a 3-D PL (Position Location) system to estimate the 3-dimensional position of a moving object in underwater environments. In this research, we let four sensors fixed in different Positions and moving sensorsto communicate with each other to find the 3-dementianal positions for both the fixed and moving objects. Using this we were also able to control the moving object remotely. When finding the position, we calculated the norm of the Jacobian matrix every iteration in the Newton algorithm. Also by using a different initial value for calculating the solution when the norm became higher than the critical value and the solution from the inverse matrix became unstable, we could find a more reliable position for the moving object. The proposed algorithm was used in implementing a DSP system capable of real-time position location. To verify the performance, experiments were done in a water tank. As a result we could see that our system could located the position of an object every 2 seconds with a error range of 5cm.

Migration from Compressible Code to Preconditioned Code (압축성 코드에서 예조건화 코드로의 이전)

  • Han, Sang-Hoon;Kim, Myeong-Ho;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.183-195
    • /
    • 2007
  • Comprehensive mathematical comparison of numerical dissipation vector was made for a compressible and the preconditioned version Roe's Riemann solvers. Choi and Merkle type preconditioning method was selected from the investigation of the convergence characteristics of the various preconditioning methods for the flows over a two-dimensional bump. The investigation suggests a way of migration from a compressible code to a preconditioning code with a minor changes in Eigenvalues while maintaining the same code structure. Von Neumann stability condition and viscous Jacobian were considered additionally to improve the stability and accuracy for the viscous flow analysis. The developed code was validated through the applications to the standard validation problems.

Optimum Operation of Power System Using Fuzzy Linear Programming (퍼지 선형계획법을 적용한 전력계통의 최적운용에 관한 연구)

  • 박성대;정재길;조양행
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.

  • PDF