• Title/Summary/Keyword: Jacobi fields

Search Result 25, Processing Time 0.027 seconds

Jacobi fields and conjugate points on heisenberg group

  • Park, Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • Let N be the 3-dimensional Heisenberg group equipped with a left-invariant metric on N. We characterize the Jacobi fields and the conjegate points along a geodesic on N, which points out that Theorem 4 of [1] is not correct.

  • PDF

JACOBI FIELDS AND CONJUGATE POINTS IN A COMPLETE RIEMANNIAN MANIFOLD

  • Cheoi, Dae Ho;Kim, Tae Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.143-150
    • /
    • 1998
  • In this paper, we investigate some properties of Jacobi fields and conjugate points in a complete Riemannian manifold M. Also we get a necessary and sufficient condition about a geodesic without conjugate points in the manifold with non-negative curvature.

  • PDF

RIEMANNIAN FOLIATIONS AND F-JACOBI FIELDS

  • Kim, Ho-Bum
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.385-391
    • /
    • 1994
  • In this report, given a Riemannian foliation F on a Riemannian manifold, we introduce the concept of F-Jacobi fields along normal geodesics to investigate geometric properties of the leaves of F.(omitted)

  • PDF

Cyclic Structure Jacobi Semi-symmetric Real Hypersurfaces in the Complex Hyperbolic Quadric

  • Imsoon Jeong;Young Jin Suh
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.287-311
    • /
    • 2023
  • In this paper, we introduce the notion of cyclic structure Jacobi semi-symmetric real hypersurfaces in the complex hyperbolic quadric Qm* = SO02,m/SO2SOm. We give a classifiction of when real hypersurfaces in the complex hyperbolic quadric Qm* having 𝔄-principal or 𝔄-isotropic unit normal vector fields have cyclic structure Jacobi semi-symmetric tensor.

SEMI-SYMMETRIC STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX QUADRIC

  • Imsoon Jeong;Gyu Jong Kim;Changhwa Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.849-861
    • /
    • 2023
  • In this paper, we introduce the notion of semi-symmetric structure Jacobi operator for Hopf real hypersufaces in the complex quadric Qm = SOm+2/SOmSO2. Next we prove that there does not exist any Hopf real hypersurface in the complex quadric Qm = SOm+2/SOmSO2 with semi-symmetric structure Jacobi operator. As a corollary, we also get a non-existence property of Hopf real hypersurfaces in the complex quadric Qm with either symmetric (parallel), or recurrent structure Jacobi operator.

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.