• Title/Summary/Keyword: Jacket transform

Search Result 19, Processing Time 0.029 seconds

Inverse-Orthogonal Jacket-Haar and DCT Transform (Inverse-Orthogonal Jacket-Haar, DCT 변환)

  • Park, Ju Yong;Khan, Md. Hashem Ali;Kim, Jeong Su;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.30-40
    • /
    • 2014
  • As the Hadamard transform can be generalized into the Jacket transform, in this paper, we generalize the Haar transform into the Jacket-Haar transform. The entries of the Jacket-Haar transform are 0 and ${\pm}2^k$. Compared with the original Haar transform, the basis of the Jacket-Haar transform is general and more suitable for signal processing. As an application, we present the DCT-II(discrete cosine transform-II) based on $2{\times}2$ Hadamard matrix and HWT(Haar Wavelete transform) based on $2{\times}2$ Haar matrix, analysis the performances of them and estimate them via the Lenna image simulation.

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

VLSI Architecture of Fast Jacket Transform (Fast Jacket Transform의 VLSI 아키텍쳐)

  • 유경주;홍선영;이문호;정진균
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.769-772
    • /
    • 2001
  • Waish-Hadamard Transform은 압축, 필터링, 코드 디자인 등 다양한 이미지처리 분야에 응용되어왔다. 이러한 Hadamard Transform을 기본으로 확장한 Jacket Transform은 행렬의 원소에 가중치를 부여함으로써 Weighted Hadamard Matrix라고 한다. Jacket Matrix의 cocyclic한 특성은 암호화, 정보이론, TCM 등 더욱 다양한 응용분야를 가질 수 있고, Space Time Code에서 대역효율, 전력면에서도 효율적인 특성을 나타낸다 [6],[7]. 본 논문에서는 Distributed Arithmetic(DA) 구조를 이용하여 Fast Jacket Transform(FJT)을 구현한다. Distributed Arithmetic은 ROM과 어큐뮬레이터를 이용하고, Jacket Watrix의 행렬을 분할하고 간략화하여 구현함으로써 하드웨어의 복잡도를 줄이고 기존의 시스톨릭한 구조보다 면적의 이득을 얻을 수 있다. 이 방법은 수학적으로 간단할 뿐 만 아니라 행렬의 곱의 형태를 단지 덧셈과 뺄셈의 형태로 나타냄으로써 하드웨어로 쉽게 구현할 수 있다. 이 구조는 입력데이타의 워드길이가 n일 때, O(2n)의 계산 복잡도를 가지므로 기존의 시스톨릭한 구조와 비교하여 더 적은 면적을 필요로 하고 FPGA로의 구현에도 적절하다.

  • PDF

A Simple Element Inverse Jacket Transform Coding (단순한 엘레멘트 인버스 재킷 변환 부호화)

  • Lee, Kwang-Jae;Park, Ju-Yong;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.132-137
    • /
    • 2007
  • Jacket transforms are a class of transforms which are simple to calculate, easily inverted and are size-flexible. Previously reported jacket transforms were generalizations of the well-known Walsh-Hadamard transform (WHT) and the center-weighted Hadamard transform (CWHT). In this paper we present a new class of jacket transform not derived from either the WHT or the CWHT. This class of transform can be applied to any even length vector, and is applicable to finite fields and is useful for constructing error control codes.

Fast Reverse Jacket Transform and Its Application (고속 리버스 자켓 변환과 그의 응용)

  • 이승래;성굉모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7A
    • /
    • pp.1250-1256
    • /
    • 2001
  • 개선된 리버스 자켓 행렬(Reverse Jacket matrix)의 정의와 함께 그의 역행렬을 소개한다. 새로이 정의된 리버스 자켓 행렬은 실베스터 타입의 하다마드 행렬을 이용하여 더욱 일반화되었다. 이 논문에서는 고속 리버스 자켓 변환(fast Reverse Jacket transform)을 제시하며 또한 이 알고리즘이 4점 이산 푸리에 변환으로 응용이 됨을 보여준다.

  • PDF

A New Sparse Matrix Analysis of DFT Similar to Element Inverse Jacket Transform (엘레멘트 인버스 재킷 변환과 유사한 DFT의 새로운 희소 행렬 분해)

  • Lee, Kwang-Jae;Park, Dae-Chul;Lee, Moon-Ho;Choi, Seung-Je
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.440-446
    • /
    • 2007
  • This paper addresses a new representation of DFT matrix via the Jacket transform based on the element inverse processing. We simply represent the inverse of the DFT matrix following on the factorization way of the Jacket transform, and the results show that the inverse of DFT matrix is only simply related to its sparse matrix and the permutations. The decomposed DFT matrix via Jacket matrix has a strong geometric structure that exhibits a block modulating property. This means that the DFT matrix decomposed via the Jacket matrix can be interpreted as a block modulating process.

Fast Reverse Jacket Transform and Its Inverse Transform (고속 리버스 자켓 변환과 그의 역변환)

  • 이승래;성굉모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.423-426
    • /
    • 2001
  • 본 논문에서는 고속 리버스 자켓 역변환(inverse fast Reverse Jacket transform, 간략히 IFRJT)을 제안하며 이방법은 역변환을 explicit 하게 표현한다. 이 알고리즘의 장점은 중앙가중치 하다마드 변환보다 더 빠르고 쉽게 주어진 행렬의 역을 구한다는 점이다. 우리는 얼마나 간단히 IFRJT를 얻을 수 있는지를 예제를 통해 보여준다.

  • PDF

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

N-Point Fast Fourier Transform Using 4$\times$4 Fast Reverse Jacket Transform (4-점 리버스 자켓 변환를 이용한 N-점 고속 푸리에 변환)

  • 이승래;성굉모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.418-422
    • /
    • 2001
  • 4-점 리버스 자켓 변환 (4-Point Reverse Jacket transform)의 장점 중의 하나는 4-점 fast Fourier transform(FFT)시 야기되는 실수 또는 복소수 곱셈을 행렬분해(matrix decomposition)를 이용, 곱셈인자를 모두 대각행렬에만 집중시킨, 매우 간결하고 효율적인 알고리즘이라는 점이다. 본 논문에서는 이를 N 점 FFT에 적용하는 알고리즘을 제안한다. 이 방법은 기존의 다른 변환형태보다 확장하거나 구조를 파악하기에 매우 용이하다.

  • PDF

Fast Hybrid Transform: DCT-II/DFT/HWT

  • Xu, Dan-Ping;Shin, Dae-Chol;Duan, Wei;Lee, Moon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.782-792
    • /
    • 2011
  • In this paper, we address a new fast DCT-II/DFT/HWT hybrid transform architecture for digital video and fusion mobile handsets based on Jacket-like sparse matrix decomposition. This fast hybrid architecture is consist of source coding standard as MPEG-4, JPEG 2000 and digital filtering discrete Fourier transform, and has two operations: one is block-wise inverse Jacket matrix (BIJM) for DCT-II, and the other is element-wise inverse Jacket matrix (EIJM) for DFT/HWT. They have similar recursive computational fashion, which mean all of them can be decomposed to Kronecker products of an identity Hadamard matrix and a successively lower order sparse matrix. Based on this trait, we can develop a single chip of fast hybrid algorithm architecture for intelligent mobile handsets.