• Title/Summary/Keyword: JASS (Journal of Astronomy and Space Sciences)

Search Result 869, Processing Time 0.025 seconds

Statistical Analysis on Weather Conditions at Chungbuk National University Observatory in Jincheon, Korea

  • Yoon, Joh-Na;Lee, Yong Sam;Kim, Chun-Hwey;Kim, Yonggi;Yim, Hong-Suh;Han, Wonyong;Jeong, Jang Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 2012
  • Astronomical Observations at Chungbuk National University Observatory (CBNUO) with an 1 m telescope have begun since April 2008, and Near-Earth Space Survey observations also have been started since November 2010, with a 0.6 m wide field telescope developed by Korea Astronomy and Space Science Institute. To improve observational efficiency, we developed a weather monitoring system enabling automatic monitoring for the weather conditions and checking the status of the observational circumstances, such as dome status. We hope this weather monitoring system can be helpful to more than 100 Korean domestic observatories, including public outreach facilities. In this paper, we present the statistic analysis of the weather conditions collected at CBNUO for 3 years (2009- 2011) and comparisons were made for clear nights between using only humidity data and both humidity and cloud data.

Perturbations of Zonal and Tesseral Harmonics on Frozen Orbits of Charged Satellites

  • Fawzy Ahmed Abd El-Salam;Walid Ali Rahoma;Magdy Ibrahim El-Saftawy;Ahmed Mostafa;Elamira Hend Khattab
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.87-106
    • /
    • 2024
  • The objective of this research is to address the issue of frozen orbits in charged satellites by incorporating geopotential zonal harmonics up to J6 and the initial tesseral harmonics. The employed model starts from the first normalized Hamiltonian to calculate specific sets of long-term frozen orbits for charged satellites. To explore the frozen orbits acquired, a MATHEMATICA CODE is developed. The investigation encompasses extensive variations in orbit altitudes by employing the orbital inclination and argument of periapsis as freezing parameters. The determined ranges ensuring frozen orbits are derived from the generated figures. Three-dimensional presentations illustrating the freezing inclination in relation to eccentricity, argument of periapsis, and semi-major axis parameters are presented. Additional three-dimensional representations of the phase space for the eccentricity vector and its projection onto the nonsingular plane are examined. In all investigated scenarios, the impacts of electromagnetic (EM) field perturbations on the freezing parameters of a charged satellite are demonstrated.

Association between Solar Variability and Teleconnection Index

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • In this study, we investigate the associations between the solar variability and teleconnection indices, which influence atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth's climate and weather, is crucial because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North-South asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated with both solar activity and the solar North-South asymmetry, with a ~3-year lag. This finding not only agrees with the fact that El $Ni{\tilde{n}}o$ episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the solar maximum periods and in El $Ni{\tilde{n}}o$ periods appear similar. Conversely, other teleconnection indices, such as the Arctic Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations resulting from the teleconnection indices themselves.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung;Mende, Stephen B.;Eastes, Richard W.;Frey, Harald U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.87-98
    • /
    • 2022
  • The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

Analysis of Dark Data of the PICNIC IR Arrays in the CIBER

  • Lee, D.H.;Kim, M.G.;Tsumura, K.;Zemcov, M.;Nam, U.W.;Bock, J.;Battle, J.;Hristov, V.;Renbarger, T.;Matsumoto, T.;Sullivan, I.;Levenson, L.R.;Mason, P.;Matsuura, S.;Kim, G.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.401-406
    • /
    • 2010
  • We have measured and analyzed the dark data of two PICNIC IR arrays (P574 and P560) obtained through the Cosmic Infrared Background ExpeRiment (CIBER). First, we identified three types of bad pixels: the cold, the hot, and the transient, which are figured in total as 0.06% for P574 and 0.19% for P560. Then, after the bad pixels were masked, we determined the dark noise to be 20.5 ${\pm}$ 0.05 $e^-$ and 16.1 ${\pm}$ 0.05 $e^-$, and the dark current to be 0.6 ${\pm}$ 0.05 $e^-$/sec and 0.7 ${\pm}$ 0.05 $e^-$/sec for P574 and P560, respectively. Finally, we discussed glitches and readout modes for a future mission.

Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

  • Lee, Yong Sam;Kim, Sang Hyuk;Mihn, Byeong-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.237-246
    • /
    • 2016
  • We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom's frontiers, in royal ancestral rituals, and in royal astronomical observatories.

Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt. Bohyun, Korea (36° N)

  • Kim, Yong-Ha;Lee, Chang-Sup;Chung, Jong-Kyun;Kim, Jeong-Han;Chun, Hye-Yeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • We have carried out all-sky imaging of OH Meinel, $O_2$ atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea ($36.2^{\circ}$ N, $128.9^{\circ}$ E, Alt = 1,124 m). We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds) are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.

A Study for the Restoration of Hong Dae-Yong Honsangui - Focusing on the structure and operating mechanism -

  • Lee, Yong Sam;Kim, Sang Hyuk;Park, Je Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.187-192
    • /
    • 2013
  • Honsangui (celestial globe) which is a water-hammering method astronomical clock is recorded in "Juhaesuyong" which is Volume VI of supplement from "Damheonseo", written by Hong Dae-Yong (1731~1783). We made out the conceptual design of Hong Dae-Yong's Honsangui through the study on its structure and working mechanism. Honsangui consist of three rings and two layers, the structure of rings which correspond to outer layer is similar to his own Tongcheonui (armillary sphere) which is a kind of armillary sphere. Honsang sphere which correspond to inner layer depicts constellations and milky way and two beads hang on it as Sun and Moon respectively for realize the celestial motion. Tongcheonui is operated by the pendulum power but Honsangui is operated by water-hammering method mechanism. This Honsangui's working mechanism is the traditional way of Joseon and it was simplified the working mechanism of Shui y$\ddot{u}$n i hsiang t'ai which is a representative astronomical clock of China. This record of Honsangui is the only historical record about the water-hammering method working mechanism of Joseon Era and it provide the study of water-hammering method mechanism with a vital clue.