DOI QR코드

DOI QR Code

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Cho, Sungki (Korea Astronomy and Space Science Institute) ;
  • Jo, Jung Hyun (Korea Astronomy and Space Science Institute)
  • Received : 2021.01.27
  • Accepted : 2021.05.17
  • Published : 2021.06.15

Abstract

In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

Keywords

References

  1. Acton C, Bachman N, Semenov B, Wright E, A look towards the future in the handling of space science mission geometry, Planet. Space Sci. 150, 9-12 (2018). https://doi.org/10.1016/j.pss.2017.02.013
  2. Addis B, Cassioli A, Locatelli M, Schoen F, A global optimization method for the design of space trajectories, Comput. Optim. Appl. 48, 635-652 (2011). https://doi.org/10.1007/s10589-009-9261-6
  3. Andrews DG, Bonner KD, Butterworth AW, Calvert HR, Dagang BRH, et al., Defining a successful commercial asteroid mining program, Acta Astronaut. 108, 106-118 (2015). https://doi.org/10.1016/j.actaastro.2014.10.034
  4. Brozovic M, Benner LAM, McMichael JG, Giorgini JD, Pravec P, et al., Goldstone and Arecibo radar observations of (99942) Apophis in 2012-2013, Icarus. 300, 115-128 (2018). https://doi.org/10.1016/j.icarus.2017.08.032
  5. Dachwald B, Wie B, Solar sail kinetic energy impactor trajectory optimization for an asteroid-deflection mission, J. Spacecr. Rockets. 44, 755-764 (2007). https://doi.org/10.2514/1.22586
  6. DeMartini JV, Richardson DC, Barnouin OS, Schmerr NC, Plescia JB, et al., Using a discrete element method to investigate seismic response and spin change of 99942 Apophis during its 2029 tidal encounter with Earth, Icarus. 328, 93-103 (2019). https://doi.org/10.1016/j.icarus.2019.03.015
  7. Englander JA, Conway BA, An automated solution of the low-thrust interplanetary trajectory problem, J. Guid. Control Dyn. 40, 15-27 (2017). https://doi.org/10.2514/1.G002124
  8. Englander JA, Ellison DH, Williams K, McAdams J, Knittel JM, et al., Optimization of the Lucy interplanetary trajectory via two-point direct shooting, in 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, 11-15 Aug 2019.
  9. Folkner WM, Williams JG, Boggs DH, Park RS, Kuchynka P, The planetary and lunar ephemerides DE430 and DE431, IPN Progress Report, 42-196 (2014).
  10. Glassmeier KH, Boehnhardt H, Koschny D, Kuhrt E, Richter I, The Rosetta mission: flying towards the origin of the solar system, Space Sci. Rev. 128, 1-21 (2007). https://doi.org/10.1007/s11214-006-9140-8
  11. Gong S, Li J, Jiang F, Interplanetary trajectory design for a hybrid propulsion system, Aerosp. Sci. Technol. 45, 104-113 (2015). https://doi.org/10.1016/j.ast.2015.04.020
  12. Gooding RH, A procedure for the solution of Lambert's orbital boundary-value problem, Celest. Mech. Dyn. Astron. 48, 145-165 (1990). https://doi.org/10.1007/BF00049511
  13. Hartmann JW, Coverstone-Carroll VL, Williams SN, Optimal interplanetary spacecraft trajectories via a Pareto genetic algorithm, J. Astronaut. Sci. 46, 267-282 (1998). https://doi.org/10.1007/BF03546237
  14. Izzo D, Revisiting Lambert's problem, Celest. Mech. Dyn. Astron. 121, 1-15 (2015). https://doi.org/10.1007/s10569-014-9587-y
  15. Jin WT, Li F, Yan JG, Andert TP, Ye M, et al., A simulated global GM estimate of the asteroid 469219 Kamo'oalewa for China's future asteroid mission, Mon. Not. R. Astron. Soc. 493, 4012-4021 (2020). https://doi.org/10.1093/mnras/staa384
  16. Kawaguchi J, Fujiwara A, Uesugi T, Hayabusa-its technology and science accomplishment summary and Hayabusa-2, Acta Astronaut. 62, 639-647 (2008). https://doi.org/10.1016/j.actaastro.2008.01.028
  17. Kawakatsu Y, V direction diagram and its application to swingby design, in 21st International Symposium on Space Flight Dynamics, Toulouse, France, 28 Sep-02 Oct 2009.
  18. Kim P, A modified basin hopping method for interplanetary trajectory design, Master Thesis, Yonsei University (2019).
  19. Lauretta DS, Balram-Knutson SS, Beshore E, Boynton WV, Drouet d'Aubigny C, et al., OSIRIS-REx: sample return from asteroid (101955) Bennu, Space Sci. Rev. 212, 925-984 (2017). https://doi.org/10.1007/s11214-017-0405-1
  20. Li S, Zhu Y, Wang Y, Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions, Adv. Space Res. 53, 696-707 (2014). https://doi.org/10.1016/j.asr.2013.12.012
  21. Marti R, Lozano JA, Mendiburu A, Hernando L, Multi-start methods, in Handbook of Heuristics, eds. Marti R, Pardalos P, Resende M (Springer, Cham, 2018), 155-175.
  22. McCarty SL, McGuire ML, Parallel monotonic basin hopping for low thrust trajectory optimization, in 28th AAS/AIAA Space Flight Mechanics Meeting, Kissimmee, FL, 8-12 Jan 2018.
  23. NASA JPL Horizons, Asteroid & comet SPK file generation request (n.d.) [Internet], viewed 2020 Dec 29, available from: https://ssd.jpl.nasa.gov/x/spk.html
  24. Oldenhuis R, Robust solver for Lambert's orbital-boundary value problem (2020) [Internet], viewed 2020 Dec 29, available from: https://www.mathworks.com/matlabcentral/fileexchange/26348-robust-solver-for-lambert-s-orbitalboundary-value-problem
  25. Prockter L, Murchie S, Cheng A, Krimigis S, Farquhar R, et al., The NEAR Shoemaker mission to asteroid 433 Eros, Acta Astronaut. 51, 491-500 (2002). https://doi.org/10.1016/S0094-5765(02)00098-X
  26. Rauwolf GA, Coverstone-Carroll VL, Near-optimal low-thrust orbit transfers generated by a genetic algorithm, J. Spacecr. Rockets. 33, 859-862 (1996). https://doi.org/10.2514/3.26850
  27. Sarli BV, Horikawa M, Yam CH, Kawakatsu Y, Yamamoto T, DESTINY+ trajectory design to (3200) Phaethon, J. Astronaut. Sci. 65, 82-110 (2018). https://doi.org/10.1007/s40295-017-0117-5
  28. Schutze O, Vasile M, Coello Coello CA, Computing the set of epsilon-efficient solutions in multiobjective space mission design, J. Aerosp. Comp. Inf. Commun. 8, 53-70 (2011). https://doi.org/10.2514/1.46478
  29. Souchay J, Lhotka C, Heron G, Herve Y, Puente V, et al., Changes of spin axis and rate of the asteroid (99942) Apophis during the 2029 close encounter with Earth: a constrained model, Astron. Astrophys. 617, A74 (2018). https://doi.org/10.1051/0004-6361/201832914
  30. Vasile M, De Pascale P, On the preliminary design of multiple gravity-assist trajectories, J. Spacecr. Rockets. 43, 794-805 (2006). https://doi.org/10.2514/1.17413
  31. Vasile M, Minisci E, Locatelli M, Analysis of some global optimization algorithms for space trajectory design, J. Spacecr. Rockets. 47, 334-344 (2010). https://doi.org/10.2514/1.45742
  32. Vavrina M, Englander J, Ellison DH, Global optimization of n-maneuver, high-thrust trajectories using direct multiple shooting, in 26th AAS/AIAA Spaceflight Mechanics Meeting, Napa, CA, 14-18 Feb 2016.
  33. Wagner S, Wie B, Robotic and human exploration/deflection mission design for asteroid 99942 Apophis, Acta Astonaut. 90, 72-79 (2013). https://doi.org/10.1016/j.actaastro.2012.11.017
  34. Wales DJ, Doye JPK, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A. 101, 5111-5116 (1997). https://doi.org/10.1021/jp970984n
  35. Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, et al., Hayabusa2 mission overview, Space Sci. Rev. 208, 3-16 (2017). https://doi.org/10.1007/s11214-017-0377-1
  36. Williams B, Antreasian P, Carranza E, Jackman C, Leonard J, et al., OSIRIS-REx flight dynamics and navigation design, Space Sci. Rev. 214, 69 (2018). https://doi.org/10.1007/s11214-018-0501-x
  37. Yam CH, Davis DC, Longuski JM, Howell KC, Buffington B, Saturn impact trajectories for Cassini end-of-mission, J. Spacecr. Rockets. 46, 353-364 (2009). https://doi.org/10.2514/1.38760
  38. Yu Y, Richardson DC, Michel P, Schwartz SR, Ballouz RL, Numerical predictions of surface effects during the 2029 close approach of asteroid 99942 Apophis, Icarus. 242, 82-96 (2014). https://doi.org/10.1016/j.icarus.2014.07.027