References
- Acton C, Bachman N, Semenov B, Wright E, A look towards the future in the handling of space science mission geometry, Planet. Space Sci. 150, 9-12 (2018). https://doi.org/10.1016/j.pss.2017.02.013
- Addis B, Cassioli A, Locatelli M, Schoen F, A global optimization method for the design of space trajectories, Comput. Optim. Appl. 48, 635-652 (2011). https://doi.org/10.1007/s10589-009-9261-6
- Andrews DG, Bonner KD, Butterworth AW, Calvert HR, Dagang BRH, et al., Defining a successful commercial asteroid mining program, Acta Astronaut. 108, 106-118 (2015). https://doi.org/10.1016/j.actaastro.2014.10.034
- Brozovic M, Benner LAM, McMichael JG, Giorgini JD, Pravec P, et al., Goldstone and Arecibo radar observations of (99942) Apophis in 2012-2013, Icarus. 300, 115-128 (2018). https://doi.org/10.1016/j.icarus.2017.08.032
- Dachwald B, Wie B, Solar sail kinetic energy impactor trajectory optimization for an asteroid-deflection mission, J. Spacecr. Rockets. 44, 755-764 (2007). https://doi.org/10.2514/1.22586
- DeMartini JV, Richardson DC, Barnouin OS, Schmerr NC, Plescia JB, et al., Using a discrete element method to investigate seismic response and spin change of 99942 Apophis during its 2029 tidal encounter with Earth, Icarus. 328, 93-103 (2019). https://doi.org/10.1016/j.icarus.2019.03.015
- Englander JA, Conway BA, An automated solution of the low-thrust interplanetary trajectory problem, J. Guid. Control Dyn. 40, 15-27 (2017). https://doi.org/10.2514/1.G002124
- Englander JA, Ellison DH, Williams K, McAdams J, Knittel JM, et al., Optimization of the Lucy interplanetary trajectory via two-point direct shooting, in 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, 11-15 Aug 2019.
- Folkner WM, Williams JG, Boggs DH, Park RS, Kuchynka P, The planetary and lunar ephemerides DE430 and DE431, IPN Progress Report, 42-196 (2014).
- Glassmeier KH, Boehnhardt H, Koschny D, Kuhrt E, Richter I, The Rosetta mission: flying towards the origin of the solar system, Space Sci. Rev. 128, 1-21 (2007). https://doi.org/10.1007/s11214-006-9140-8
- Gong S, Li J, Jiang F, Interplanetary trajectory design for a hybrid propulsion system, Aerosp. Sci. Technol. 45, 104-113 (2015). https://doi.org/10.1016/j.ast.2015.04.020
- Gooding RH, A procedure for the solution of Lambert's orbital boundary-value problem, Celest. Mech. Dyn. Astron. 48, 145-165 (1990). https://doi.org/10.1007/BF00049511
- Hartmann JW, Coverstone-Carroll VL, Williams SN, Optimal interplanetary spacecraft trajectories via a Pareto genetic algorithm, J. Astronaut. Sci. 46, 267-282 (1998). https://doi.org/10.1007/BF03546237
- Izzo D, Revisiting Lambert's problem, Celest. Mech. Dyn. Astron. 121, 1-15 (2015). https://doi.org/10.1007/s10569-014-9587-y
- Jin WT, Li F, Yan JG, Andert TP, Ye M, et al., A simulated global GM estimate of the asteroid 469219 Kamo'oalewa for China's future asteroid mission, Mon. Not. R. Astron. Soc. 493, 4012-4021 (2020). https://doi.org/10.1093/mnras/staa384
- Kawaguchi J, Fujiwara A, Uesugi T, Hayabusa-its technology and science accomplishment summary and Hayabusa-2, Acta Astronaut. 62, 639-647 (2008). https://doi.org/10.1016/j.actaastro.2008.01.028
- Kawakatsu Y, V∞ direction diagram and its application to swingby design, in 21st International Symposium on Space Flight Dynamics, Toulouse, France, 28 Sep-02 Oct 2009.
- Kim P, A modified basin hopping method for interplanetary trajectory design, Master Thesis, Yonsei University (2019).
- Lauretta DS, Balram-Knutson SS, Beshore E, Boynton WV, Drouet d'Aubigny C, et al., OSIRIS-REx: sample return from asteroid (101955) Bennu, Space Sci. Rev. 212, 925-984 (2017). https://doi.org/10.1007/s11214-017-0405-1
- Li S, Zhu Y, Wang Y, Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions, Adv. Space Res. 53, 696-707 (2014). https://doi.org/10.1016/j.asr.2013.12.012
- Marti R, Lozano JA, Mendiburu A, Hernando L, Multi-start methods, in Handbook of Heuristics, eds. Marti R, Pardalos P, Resende M (Springer, Cham, 2018), 155-175.
- McCarty SL, McGuire ML, Parallel monotonic basin hopping for low thrust trajectory optimization, in 28th AAS/AIAA Space Flight Mechanics Meeting, Kissimmee, FL, 8-12 Jan 2018.
- NASA JPL Horizons, Asteroid & comet SPK file generation request (n.d.) [Internet], viewed 2020 Dec 29, available from: https://ssd.jpl.nasa.gov/x/spk.html
- Oldenhuis R, Robust solver for Lambert's orbital-boundary value problem (2020) [Internet], viewed 2020 Dec 29, available from: https://www.mathworks.com/matlabcentral/fileexchange/26348-robust-solver-for-lambert-s-orbitalboundary-value-problem
- Prockter L, Murchie S, Cheng A, Krimigis S, Farquhar R, et al., The NEAR Shoemaker mission to asteroid 433 Eros, Acta Astronaut. 51, 491-500 (2002). https://doi.org/10.1016/S0094-5765(02)00098-X
- Rauwolf GA, Coverstone-Carroll VL, Near-optimal low-thrust orbit transfers generated by a genetic algorithm, J. Spacecr. Rockets. 33, 859-862 (1996). https://doi.org/10.2514/3.26850
- Sarli BV, Horikawa M, Yam CH, Kawakatsu Y, Yamamoto T, DESTINY+ trajectory design to (3200) Phaethon, J. Astronaut. Sci. 65, 82-110 (2018). https://doi.org/10.1007/s40295-017-0117-5
- Schutze O, Vasile M, Coello Coello CA, Computing the set of epsilon-efficient solutions in multiobjective space mission design, J. Aerosp. Comp. Inf. Commun. 8, 53-70 (2011). https://doi.org/10.2514/1.46478
- Souchay J, Lhotka C, Heron G, Herve Y, Puente V, et al., Changes of spin axis and rate of the asteroid (99942) Apophis during the 2029 close encounter with Earth: a constrained model, Astron. Astrophys. 617, A74 (2018). https://doi.org/10.1051/0004-6361/201832914
- Vasile M, De Pascale P, On the preliminary design of multiple gravity-assist trajectories, J. Spacecr. Rockets. 43, 794-805 (2006). https://doi.org/10.2514/1.17413
- Vasile M, Minisci E, Locatelli M, Analysis of some global optimization algorithms for space trajectory design, J. Spacecr. Rockets. 47, 334-344 (2010). https://doi.org/10.2514/1.45742
- Vavrina M, Englander J, Ellison DH, Global optimization of n-maneuver, high-thrust trajectories using direct multiple shooting, in 26th AAS/AIAA Spaceflight Mechanics Meeting, Napa, CA, 14-18 Feb 2016.
- Wagner S, Wie B, Robotic and human exploration/deflection mission design for asteroid 99942 Apophis, Acta Astonaut. 90, 72-79 (2013). https://doi.org/10.1016/j.actaastro.2012.11.017
- Wales DJ, Doye JPK, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A. 101, 5111-5116 (1997). https://doi.org/10.1021/jp970984n
- Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, et al., Hayabusa2 mission overview, Space Sci. Rev. 208, 3-16 (2017). https://doi.org/10.1007/s11214-017-0377-1
- Williams B, Antreasian P, Carranza E, Jackman C, Leonard J, et al., OSIRIS-REx flight dynamics and navigation design, Space Sci. Rev. 214, 69 (2018). https://doi.org/10.1007/s11214-018-0501-x
- Yam CH, Davis DC, Longuski JM, Howell KC, Buffington B, Saturn impact trajectories for Cassini end-of-mission, J. Spacecr. Rockets. 46, 353-364 (2009). https://doi.org/10.2514/1.38760
- Yu Y, Richardson DC, Michel P, Schwartz SR, Ballouz RL, Numerical predictions of surface effects during the 2029 close approach of asteroid 99942 Apophis, Icarus. 242, 82-96 (2014). https://doi.org/10.1016/j.icarus.2014.07.027