DOI QR코드

DOI QR Code

Association between Solar Variability and Teleconnection Index

  • Kim, Jung-Hee (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2019.08.07
  • Accepted : 2019.08.16
  • Published : 2019.09.15

Abstract

In this study, we investigate the associations between the solar variability and teleconnection indices, which influence atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth's climate and weather, is crucial because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North-South asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated with both solar activity and the solar North-South asymmetry, with a ~3-year lag. This finding not only agrees with the fact that El $Ni{\tilde{n}}o$ episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the solar maximum periods and in El $Ni{\tilde{n}}o$ periods appear similar. Conversely, other teleconnection indices, such as the Arctic Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations resulting from the teleconnection indices themselves.

Keywords

References

  1. Artamonova I, Veretenenko S, Galactic cosmic ray variation influence on baric system dynamics at middle latitudes, J. Atmos. Sol.-Terr. Phys. 73, 366-370 (2011). https://doi.org/10.1016/j.jastp.2010.05.004
  2. Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y
  3. Bhalme HN, Mooley DA, Jadhav SK, Fluctuations in the drought/ flood area over India and relationships with the Southern Oscillation, Mon. Wea. Rev. 111, 86-94 (1983). https://doi.org/10.1175/1520-0493(1983)111<0086:FITDAO>2.0.CO;2
  4. Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010
  5. Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the $F_2$ peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308
  6. Chang HY, Latitudinal distribution of sunspot and North-South asymmetry revisited, J. Astron. Space Sci. 35, 55-66 (2018). https://doi.org/10.5140/JASS.2018.35.2.55
  7. Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395
  8. Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3
  9. Choi JW, Cha Y, Kim HD, Interdecadal variation of precipitation days in August in the Korean Peninsula, Dyn. Atmos. Oceans 77, 74-88 (2017). https://doi.org/10.1016/j.dynatmoce.2016.10.003
  10. Choi KS, Moon IJ, Influence of the Western Pacific teleconnection pattern on Western North Pacific tropical cyclone activity, Dyn. Atmos. Oceans 57, 1-16 (2012). https://doi.org/10.1016/j.dynatmoce.2012.04.002
  11. Coumou D, Rahmstorf S, A decade of weather extremes, Nat. Clim. Chang. 2, 491-496 (2012). https://doi.org/10.1038/nclimate1452
  12. Eddy JA, Climate and the changing sun, Clim. Chang. 1, 173-190 (1977). https://doi.org/10.1007/BF01884410
  13. Elsner JB, Jagger TH, United States and Caribbean tropical cyclone activity related to the solar cycle, Geophys. Res. Lett. 35, L18705 (2008). https://doi.org/10.1029/2008GL034431
  14. Emmert JT, Picone JM, Climatology of globally averaged thermospheric mass density, J. Geophys. res. 115, A09326 (2010). https://doi.org/10.1029/2010JA015298
  15. Frohlich C, Solar Irradiance variability since 1978, Space Sci. Rev. 125, 53-65 (2006). https://doi.org/10.1007/s11214-006-9046-5
  16. Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498
  17. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282
  18. Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res. Atmos. 118, 13405-13420 (2013). https://doi.org/10.1002/2013JD020062
  19. Haam E, Tung KK, Statistics of solar cycle-La Nina connection: correlation of two autocorrelated time series, J. Atmos. Sci. 69, 2934-2939 (2012). https://doi.org/10.1175/JAS-D-12-0101.1
  20. Haigh JD, The Sun and the Earth's climate, Living. Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2
  21. Ho CH, Choi W, Kim J, Kim MK, Yoo HD, Does El Nino-Southern Oscillation affect the precipitation in Korea on seasonal time scales? Asia-Pac. J. Atmos. Sci. 52(4), 395-403 (2016). https://doi.org/10.1007/s13143-016-0016-x
  22. Hung CW, A 300-year typhoon record in Taiwan and the relationship with Solar activity, Terr. Atmos. Ocean. Sci. 24, 737-743 (2013). https://doi.org/10.3319/TAO.2013.02.18.01(A)
  23. Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A. 20, 6699 (2005). https://doi.org/10.1142/S0217751X0502985X
  24. Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in western north pacific ocean, J. Astron. Space Sci. 34, 257-270 (2017). https://doi.org/10.5140/JASS.2017.34.4.257
  25. Kim KB, Kim JH, Chang HY, Do solar cycles share spectral properties with tropical cyclones that occur in the western north pacific ocean? J. Astron. Space Sci. 35, 151-161 (2018). https://doi.org/10.5140/JASS.2018.35.3.151
  26. Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA, Variations in global cloud cover and the fair-weather vertical electric field, J. Atmos. Sol.-Terr. Phys. 70, 1633-1642 (2008). https://doi.org/10.1016/j.jastp.2008.07.001
  27. Krivova NA, Solanki SK, Solar variability and global warming: A statistical comparison since 1850, Adv. Space Res, 34(2), 361-364 (2004). https://doi.org/10.1016/j.asr.2003.02.051
  28. Labitzke K, Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett. 14, 535-537 (1987). https://doi.org/10.1029/GL014i005p00535
  29. Labitzke K, van Loon H, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere in winter, J. Atmos. Terr. Phys. 50, 197-206 (1988). https://doi.org/10.1016/0021-9169(88)90068-2
  30. Lee S, Yi Y, Pacific equatorial sea surface temperature variation during the 2015 El Nino period observed by advanced veryhigh- resolution radiometer of NOAA satellites, J. Astron. Space Sci. 35, 105-109 (2018). https://doi.org/10.5140/JASS.2018.35.2.105
  31. Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896
  32. Mazzarella A, Palumbo F, Rainfall fluctuations over Italy and their association with solar activity, Theor. Appl. Clim. 45, 201-207 (1992). https://doi.org/10.1007/BF00866193
  33. Meehl GA, Arblaster JM, Branstator G, von Loon H, A coupled air-sea response mechanism to solar forcing in the Pacific region, J. Clim. 21, 2883-2897 (2008). https://doi.org/10.1175/2007JCLI1776.1
  34. Meehl GA, Arblaster JM, Matthes K, Sassi F, von Loon H, Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science 325, 1114-1118 (2009). https://doi.org/10.1126/science.1172872
  35. Meshcherskaya AV, Blazhevich VG, The drought and excessive moisture indices in a historical perspective in the principal grain-producing regions of the former Soviet Union, J. Clim. 10, 2670-2682 (1997). https://doi.org/10.1175/1520-0442(1997)010<2670:TDAEMI>2.0.CO;2
  36. Mironova IA, Usoskin IG, Kovaltsov GA, Petelina SV, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence, Atmos. Chem. Phys. 12, 769-778 (2012). https://doi.org/10.5194/acp-12-769-2012
  37. Mironova IA, Usoskin IG, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: a case study, Atmos. Chem. Phys. 13, 8543-8550 (2013). https://doi.org/10.5194/acp-13-8543-2013
  38. Mironova IA, Usoskin IG, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results, Environ. Res. Lett. 9, 015002 (2014). https://doi.org/10.1088/1748-9326/9/1/015002
  39. Muraki Y, Application of a coupled harmonic oscillator model to solar activity and El Nino phenomena, J. Astron. Space Sci. 35, 75-81 (2018). https://doi.org/10.5140/JASS.2018.35.2.75
  40. Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241
  41. Park JH, Kim KB, Chang HY, Statistical properties of effective drought index (EDI) for Seoul, Busan, Daegu, Mokpo in South Korea, Asia-Pac. J. Atmos. Sci. 50(4), 453-458 (2014). https://doi.org/10.1007/s13143-014-0035-4
  42. Perez-Peraza J, Kavlakov S, Velasco V, Gallegos-Cruz A, Azpra- Romero E, et al., Solar, geomagnetic and cosmic ray intensity changes, preceding the cyclone appearances around Mexico, Adv. Space Res. 42, 1601-1613 (2008). https://doi.org/10.1016/j.asr.2007.12.004
  43. Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004). https://doi.org/10.1029/2003GI000060
  44. Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9
  45. Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006
  46. Roy I, Haigh JD, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys. 10, 3147-3153 (2010). https://doi.org/10.5194/acp-10-3147-2010
  47. Roy I, Haigh JD, Solar cycle signals in the pacific and the issue of timings, J. Atmos. Sci. 69, 1446-1451 (2012). https://doi.org/10.1175/JAS-D-11-0277.1
  48. Sagir S, Karatay S, Atici R, Yesil A, Ozcan O, The relationship between the quasi biennial oscillation and sunspot number, Adv. Space Res. 55, 106-112 (2015). https://doi.org/10.1016/j.asr.2014.09.035
  49. Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539
  50. Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1
  51. Tinsley BA, Deen GW, Apparent tropospheric response to MeVGeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473
  52. Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875
  53. Van Loon H, Meehl GA, Shea DJ, Coupled air-sea response to solar forcing in the pacific region during northern winter, J. Geophys. Res. 112, D02108 (2007). https://doi.org/10.1029/2006JD007378
  54. Van Loon H, Meehl GA, The response in the pacific to the sun's decadal peaks and contrasts to cold events in the southern oscillation, J. Atmos. Sol.-Terr. Phys. 70, 1046-1055 (2008). https://doi.org/10.1016/j.jastp.2008.01.009
  55. Veretenenko S, Thejll P, Effects of energetic solar proton events on the cyclone development in the North Atlantic, J. Atmos. Sol.-Terr. Phys. 66, 393-405 (2004). https://doi.org/10.1016/j.jastp.2003.11.005
  56. Zhou J, Tung KK, Solar cycles in 150 years of global sea surface temperature data, J. Clim. 23, 3234-3248 (2010). https://doi.org/10.1175/2010JCLI3232.1
  57. Zhou L, Tinsley B, Chu H, Xiao Z, Correlations of global sea surface temperatures with the solar wind speed, J. Atmos. Sol.-Terr. Phys. 149, 232-239 (2016). https://doi.org/10.1016/j.jastp.2016.02.010