DOI QR코드

DOI QR Code

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Mende, Stephen B. (Space Sciences Laboratory at University of California at Berkeley) ;
  • Eastes, Richard W. (Laboratory for Atmospheric and Space Physics, University of Colorado Boulder) ;
  • Frey, Harald U. (Space Sciences Laboratory at University of California at Berkeley)
  • Received : 2022.05.09
  • Accepted : 2022.07.29
  • Published : 2022.09.15

Abstract

The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.

Keywords

Acknowledgement

The ICON data are open to the public at: https://icon.ssl.berkeley.edu/Data. GOLD data and quicklook images are available at: https://gold.cs.ucf.edu/data/search/. J. Park was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (No. CPS21161-120) and the Korea Astronomy and Space Science Institute grant funded by the Korea government (MSIT) (No. 2022-1-850-09).

References

  1. Anderson PC, Rich FJ, Borisov S, Mapping the South Atlantic anomaly continuously over 27 years, J. Atmos. Sol. Terr. Phys. 177, 237-246 (2018). https://doi.org/10.1016/j.jastp.2018.03.015
  2. Aol S, Buchert S, Jurua E, Traits of sub-kilometre F-region irregularities as seen with the Swarm satellites, Ann. Geophys. 38, 243-261 (2020). https://doi.org/10.5194/angeo-38-243-2020
  3. Cai X, Burns AG, Wang W, Coster A, Qian L, et al., Comparison of GOLD nighttime measurements with total electron content: preliminary results, J. Geophys. Res. Space Phys. 125, e2019JA027767 (2020). https://doi.org/10.1029/2019JA027767
  4. Carter BA, Zhang K, Norman R, Kumar VV, Kumar S, On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements, J. Geophys. Res. Space Phys. 118, 892-904 (2013). https://doi.org/10.1002/jgra.50089
  5. Choi JM, Kil H, Kwak YS, Park J, Lee WK, et al., Periodicity in the occurrence of equatorial plasma bubbles derived from the C/NOFS observations in 2008-2012, J. Geophys. Res. Space Phys. 122, 1137-1145 (2017). https://doi.org/10.1002/2016JA023528
  6. Comberiate J, Paxton LJ, Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/SSUSI, Space Weather. 8, S10002 (2010). https://doi.org/10.1029/2009SW000546
  7. DeMajistre R, Paxton LJ, Morrison D, Yee JH, Goncharenko LP, et al., Retrievals of nighttime electron density from thermosphere ionosphere mesosphere energetics and dynamics (TIMED) mission global ultraviolet imager (GUVI) measurements, J. Geophys. Res. Space Phys. 109, A05305 (2004). https://doi.org/10.1029/2003JA010296
  8. Eastes RW, Solomon SC, Daniell RE, Anderson DN, Burns AG, et al., Global-scale observations of the equatorial ionization anomaly, Geophys. Res. Lett. 46, 9318-9326 (2019). https://doi.org/10.1029/2019GL084199
  9. Evans JS, Lumpe JD, Correira J, Veibell V, Kyrwonos A, et al., Neutral exospheric temperatures from the GOLD mission, J. Geophys. Res. Space Phys. 125, e2020JA027814 (2020). https://doi.org/10.1029/2020JA027814
  10. Henderson SB, Swenson CM, Christensen AB, Paxton LJ, Morphology of the equatorial anomaly and equatorial plasma bubbles using image subspace analysis of global ultraviolet imager data, J. Geophys. Res. Space Phys. 110, A11306 (2005a). https://doi.org/10.1029/2005JA011080
  11. Henderson SB, Swenson CM, Gunther JH, Christensen AB, Paxton LJ, Method for characterization of the equatorial anomaly using image subspace analysis of global ultraviolet imager data, J. Geophys. Res. Space Phys. 110, A08308 (2005b). https://doi.org/10.1029/2004JA010830
  12. Huang CS, Le G, de La Beaujardiere O, Roddy PA, Hunton DE, et al., Relationship between plasma bubbles and density enhancements: observations and interpretation, J. Geophys. Res. Space Phys. 119, 1325-1336 (2014). https://doi.org/10.1002/2013JA019579
  13. Huba JD, Liu HL, Global modeling of equatorial spread F with SAMI3/WACCM-X, Geophys. Res. Lett. 47, e2020GL088258 (2020). https://doi.org/10.1029/2020GL088258
  14. Immel TJ, England SL, Mende SB, Heelis RA, Englert CR, et al., The ionospheric connection explorer mission: mission goals and design, Space Sci. Rev. 214, 13 (2018). https://doi.org/10.1007/s11214-017-0449-2
  15. Immel TJ, Mende SB, Frey HU, Peticolas LM, Sagawa E, Determination of low latitude plasma drift speeds from FUV images, Geophys. Res. Lett. 30, 1945 (2003). https://doi.org/10.1029/2003GL017573
  16. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, et al., Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett. 33, L15108 (2006). https://doi.org/10.1029/2006GL026161
  17. Jin Y, Xiong C, Clausen L, Spicher A, Kotova D, et al., Ionospheric plasma irregularities based on in situ measurements from the Swarm satellites, J. Geophys. Res. Space Phys. 125, e2020JA028103 (2020). https://doi.org/10.1029/2020JA028103
  18. Johnson CY, Ionospheric composition and density from 90 to 1200 kilometers at solar minimum, J. Geophys. Res. 71, 330-332 (1966). https://doi.org/10.1029/JZ071i001p00330
  19. Kamalabadi F, Comberiate J, Paxton L, Kil H, Detection and mapping of plasma bubbles with the global ultraviolet imager (2003) [Internet], viewed 2022 Apr 10, available from: https://ui.adsabs.harvard.edu/abs/2003EAEJA....13000K/abstract
  20. Karan DK, Daniell RE, England SL, Martinis CR, Eastes RW, et al., First zonal drift velocity measurement of equatorial plasma bubbles (EPBs) from a geostationary orbit using GOLD data, J. Geophys. Res. Space Phys. 125, e2020JA028173 (2020). https://doi.org/10.1029/2020JA028173
  21. Kelley MC, Makela JJ, Paxton LJ, Kamalabadi F, Comberiate JM, et al., The first coordinated ground- and space-based optical observations of equatorial plasma bubbles, Geophys. Res. Lett. 30, 176 (2003). https://doi.org/10.1029/2003GL017301
  22. Kepkar A, Arras C, Wickert J, Schuh H, Alizadeh M, et al., Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3/COSMIC GPS radio occultation data, Ann. Geophys. 38, 611-623 (2020). https://doi.org/10.5194/angeo-38-611-2020
  23. Khadka SM, Valladares CE, Sheehan R, Gerrard AJ, Effects of electric field and neutral wind on the asymmetry of equatorial ionization anomaly, Radio Sci. 53, 683-697 (2018). https://doi.org/10.1029/2017RS006428
  24. Kil H, DeMajistre M, Paxton LJ, Zhang Y, F-region Pedersen conductivity deduced using the TIMED/GUVI limb retrievals, Ann. Geophys. 24, 1311-1316 (2006). https://doi.org/10.5194/angeo-24-1311-2006
  25. Kim H, Min K, Park J, Lee J, Lee E, et al., Comparison of satellite measurements of the low-latitude nighttime upper ionosphere with IRI, J. Atmos. Sol. Terr. Phys. 68, 2107-2118 (2006). https://doi.org/10.1016/j.jastp.2006.08.006
  26. Laundal KM, Richmond AD, Magnetic coordinate systems, Space Sci. Rev. 206, 27-59 (2017). https://doi.org/10.1007/s11214-016-0275-y
  27. Lee CN, Min KW, Lee JJ, Hwang JA, Park J, et al., FUV spectrum in the polar region during slightly disturbed geomagnetic conditions, J. Geophys. Res. Space Phys. 116, A10319 (2011). https://doi.org/10.1029/2011JA016898
  28. Lee JJ, Min KW, Kim VP, Hegai VV, Oyama KI, et al., Large density depletions in the nighttime upper ionosphere during the magnetic storm of July 15, 2000, Geophys. Res. Lett. 29, 2-1-2-4 (2002). https://doi.org/10.1029/2001GL013991
  29. Li Q, Hao Y, Zhang D, Xiao Z, Nighttime enhancements in the midlatitude ionosphere and their relation to the plasmasphere, J. Geophys. Res. Space Phys. 123, 7686-7696 (2018a). https://doi.org/10.1029/2018JA025422
  30. Li Q, Liu L, Balan N, Huang H, Zhang R, et al., Longitudinal structure of the midlatitude ionosphere using COSMIC electron density profiles, J. Geophys. Res. Space Phys. 123, 8766-8777 (2018b). https://doi.org/10.1029/2017JA024927
  31. Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, et al., Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett. 34, L19101 (2007). https://doi.org/10.1029/2007GL030741
  32. Lin CY, Lin CCH, Liu JY, Rajesh PK, Matsuo T, et al., The early results and validation of FORMOSAT-7/COSMIC-2 space weather products: global ionospheric specification and Ne-aided Abel electron density profile, J. Geophys. Res. Space Phys. 125, e2020JA028028 (2020). https://doi.org/10.1029/2020JA028028
  33. Ma G, Hocke K, Li J, Wan Q, Lu W, Fu W, GNSS ionosphere sounding of equatorial plasma bubbles, Atmosphere. 10, 676 (2019). https://doi.org/10.3390/atmos10110676
  34. Martinis C, Daniell R, Eastes R, Norrell J, Smith J, et al., Longitudinal variation of postsunset plasma depletions from the global-scale observations of the limb and disk (GOLD) mission, J. Geophys. Res. Space Phys. 126, e2020JA028510 (2021). https://doi.org/10.1029/2020JA028510
  35. Mende SB, Carlson CW, Frey HU, Immel TJ, Gerard JC, IMAGE FUV and in situ FAST particle observations of substorm aurorae, J. Geophys. Res. Space Phys. 108, 8010 (2003). https://doi.org/10.1029/2002JA009413
  36. Mende SB, Frey HU, Rider K, Chou C, Harris SE, et al., The far ultra-violet imager on the ICON mission, Space Sci. Rev. 212, 655-696 (2017). https://doi.org/10.1007/s11214-017-0386-0
  37. Min K, Park J, Kim H, Kim V, Kil H, et al., The 27-day modulation of the low-latitude ionosphere during a solar maximum, J. Geophys. Res. Space Phys. 114, A043171 (2009). https://doi.org/10.1029/2008JA013881
  38. Park J, Heelis R, Chao CK, Ion velocity and temperature variation around topside nighttime irregularities: contrast between low- and mid-latitude regions, J. Geophys. Res. Space Phys. 126, e2020JA028810 (2021). https://doi.org/10.1029/2020JA028810
  39. Rajesh PK, Liu JY, Lin CH, Chen AB, Hsu RR, et al., Space-based imaging of nighttime medium-scale traveling ionospheric disturbances using FORMOSAT-2/ISUAL 630.0nm airglow observations, J. Geophys. Res. Space Phys. 121, 4769-4781 (2016). https://doi.org/10.1002/2015JA022334
  40. Schaefer RK, Paxton LJ, Selby C, Ogorzalek B, Romeo G, et al., Observation and modeling of the South Atlantic anomaly in low Earth orbit using photometric instrument data, Space Weather. 14, 330-342 (2016). https://doi.org/10.1002/2016SW001371
  41. Sivakandan M, Chakrabarty D, Ramkumar TK, Guharay A, Taori A, et al., Evidence for deep ingression of the midlatitude MSTID into as low as ~3.5° magnetic latitude, J. Geophys. Res. Space Phys. 124, 749-764 (2019). https://doi.org/10.1029/2018JA026103
  42. Stolle C, Luhr H, Rother M, Balasis G, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res. Space Phys. 111, A02304 (2006). https://doi.org/10.1029/2005JA011184
  43. Su SY, Liu CH, Ho HH, Chao CK, Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions, J. Geophys. Res. 111, A06305 (2006). https://doi.org/10.1029/2005JA011330
  44. Tsai TC, Jhuang HK, Lee LC, Ho YY, Ionospheric peaked structures and their local time, seasonal, and solar activity dependence based on global ionosphere maps, J. Geophys. Res. Space Phys. 124, 7994-8014 (2019). https://doi.org/10.1029/2019JA026899
  45. Urco JM, Kamalabadi F, Kamaci U, Harding BJ, Frey HU, et al., Conjugate photoelectron energy spectra derived from coincident FUV and radio measurements, Geophys. Res. Lett. 48, e2021GL095839 (2021). https://doi.org/10.1029/2021GL095839
  46. Wautelet G, Hubert B, Gerard JC, Immel TJ, The OI-135.6 nm nighttime emission in ICON-FUV images: a new tool for the observation of classical medium-scale traveling ionospheric disturbances? J. Geophys. Res. Space Phys. 124, 7670-7686 (2019). https://doi.org/10.1029/2019JA026930
  47. Wautelet G, Hubert B, Gerard JC, Immel TJ, Frey HU, et al., First ICON-FUV nighttime NmF2 and hmF2 comparison to ground and space-based measurements, J. Geophys. Res. Space Phys. 126, e2021JA029360 (2021). https://doi.org/10.1029/2021JA029360
  48. Xiong C, Luhr H, Fejer BG, Global features of the disturbance winds during storm time deduced from CHAMP observations, J. Geophys. Res. Space Phys. 120, 5137-5150 (2015). https://doi.org/10.1002/2015JA021302
  49. Xiong C, Park J, Luhr H, Stolle C, Ma SY, Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity, Ann. Geophys. 28, 1647-1658 (2010). https://doi.org/10.5194/angeo-28-1647-2010
  50. Yokoyama TS, Su SY, Fukao S, Plasma blobs and irregularities concurrently observed by ROCSAT-1 and equatorial atmosphere radar, J. Geophys. Res. Space Phys. 112, 12, A05311 (2007). https://doi.org/10.1029/2006JA012044
  51. Yue X, Schreiner WS, Rocken C, Kuo YH, Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements, Radio Sci. 46 (2011). https://doi.org/10.1029/2010RS004514
  52. Zhang Y, Paxton LJ, Kil H, Nightside midlatitude ionospheric arcs: TIMED/GUVI observations, J. Geophys. Res. Space Phys. 118, 3584-3591 (2013). https://doi.org/10.1002/jgra.50327
  53. Zhang Y, Paxton LJ, Schaefer R, Ionospheric and thermospheric contributions in TIMED/GUVI O 135.6 nm radiances, J. Geophys. Res. Space Phys. 126, e2021JA029333 (2021). https://doi.org/10.1029/2021JA029333