• Title/Summary/Keyword: Iterative technique

Search Result 569, Processing Time 0.025 seconds

PROJECTION METHODS FOR RELAXED COCOERCIVE VARIATION INEQUALITIES IN HILBERT SPACES

  • Su, Yongfu;Zhang, Hong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.431-440
    • /
    • 2009
  • In this paper, we introduce and consider a new system of relaxed cocoercive variational inequalities involving three different operators and the concept of projective nonexpansive mapping. Base on the projection technique, we suggest two kinds of new iterative methods for the approximate solvability of this system. The results presented in this paper extend and improve the main results of [S.S. Chang, H.W.J. Lee, C.K. Chan, Generalized system for relaxed co coercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334] and [Z. Huang, M. Aslam Noor, An explicit projection method for a system of nonlinear variational inequalities with different ($\gamma,r$)-cocoercive mappings, Appl. Math. Comput. (2007), doi:10.1016/j.amc.2007.01.032].

  • PDF

System Decomposition Technique using Multiple Objective Genetic Algorithm (다목적 유전알고리듬을 이용한 시스템 분해 기법)

  • Park, Hyung-Wook;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.170-175
    • /
    • 2001
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multiple objective genetic algorithm (MOGA), and a sample test case is presented to show the effects of optimizing the sequence with MOGA.

  • PDF

SOLUTION OF TENTH AND NINTH-ORDER BOUNDARY VALUE PROBLEMS BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • In this paper, we apply homotopy perturbation method (HPM) for solving ninth and tenth-order boundary value problems. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed homotopy perturbation method solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method.

A Closed Queueing Network Model for the Performance Evaluation of the Multi-Echelon Repair System (다단계 수리체계의 성능평가를 위한 폐쇄형 대기행렬 네트워크 모형)

  • 박찬우;김창곤;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.27-44
    • /
    • 2000
  • In this study we consider a spares provisioning problem for repairable items in which a parts inventory system is incorporated. If a machine fails, a replacement part must be obtained at the parts inventory system before the failed machine enters the repair center. The inventory policy adopted at the parts inventory system is the (S, Q) policy. Operating times of the machine before failure, ordering lead times and repair times are assumed to follow a two-stage Coxian distribution. For this system, we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of machines at each station and the probability that a part will wait at the parts inventory system. For the analysis of the proposed system, we model the system as a closed queueing network and analyze it using a product-form approximation method. A recursive technique as well as an iterative procedure is used to analyze the sub-network. Numerical tests show that the approximation method provides fairly good estimation of the performance measures of interest.

  • PDF

A Self-Organizing Map Based Hough Transform for Detecting Straight Lines (직선 추출을 위한 자기조직화지도 기반의 허프 변환)

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.162-170
    • /
    • 2002
  • Detecting straight lines in an image is frequently required for various machine vision applications such as restoring CAD drawings from scanned images and object recognition. The standard Hough transform has been dominantly used to that purpose. However, massive storage requirement and low precision in estimating line parameters due to the quantization of parameter space are the major drawbacks of the Hough transform technique. In this paper, to overcome the drawbacks, an iterative algorithm based on a self-organizing map is presented. The self-organizing map can be adaptively learned such that image points are clustered by prominent lines. Through the procedure of the algorithm, a set of lines are sequentially detected one at a time. The algorithm can produce highly precised estimates of line parameters using very small amount of storage memory. Computational results for synthetically generated images are given. The promise of the algorithm is also demonstrated with its application to two natural images of inserts.

Iterative Analysis for Nonlinear Laminated Rectangular Plates by Finite Difference Method

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • A new system of equations governing the nonlinear thin laminated plates with large deflections using von Karman equations is derived. The effects of transverse shear in the thin interlayer are included as part of the analysis. The finite difference method is used to perform the geometrically nonlinear behavior of the plate. The resultant equations permit the analysis of the effect of transverse shear stress deformation on the overall behavior of the interlayer using the load incremental method. For the purpose of feasibility and validity of this present method, the numerical results are compared with other available solutions for accuracy as well as efficiency. The solution techniques have been implemented and the numerical results of example problem are discussed and evaluated.

EXISTENCE OF SOLUTION FOR A FRACTIONAL DIFFERENTIAL INCLUSION VIA NONSMOOTH CRITICAL POINT THEORY

  • YANG, BIAN-XIA;SUN, HONG-RUI
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.537-555
    • /
    • 2015
  • This paper is concerned with the existence of solutions to the following fractional differential inclusion $$\{-{\frac{d}{dx}}\(p_0D^{-{\beta}}_x(u^{\prime}(x)))+q_xD^{-{\beta}}_1(u^{\prime}(x))\){\in}{\partial}F_u(x,u),\;x{\in}(0,1),\\u(0)=u(1)=0,$$ where $_0D^{-{\beta}}_x$ and $_xD^{-{\beta}}_1$ are left and right Riemann-Liouville fractional integrals of order ${\beta}{\in}(0,1)$ respectively, 0 < p = 1 - q < 1 and $F:[0,1]{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is locally Lipschitz with respect to the second variable. Due to the general assumption on the constants p and q, the problem does not have a variational structure. Despite that, here we study it combining with an iterative technique and nonsmooth critical point theory, we obtain an existence result for the above problem under suitable assumptions. The result extends some corresponding results in the literatures.

Construction of Optimal Concatenated Zigzag Codes Using Density Evolution with a Gaussian Approximation

  • Hong Song-Nam;Shin Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.825-830
    • /
    • 2006
  • Capacity-approaching codes using iterative decoding have been the main subject of research activities during past decade. Especially, LDPC codes show the best asymptotic performance and density evolution has been used as a powerful technique to analyze and design good LDPC codes. In this paper, we apply density evolution with a Gaussian approximation to the concatenated zigzag (CZZ) codes by considering both flooding and two-way schedulings. Based on this density evolution analysis, the threshold values are computed for various CZZ codes and the optimal structure of CZZ codes for various code rates are obtained. Also, simulation results are provided to conform the analytical results.

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER

  • Kim, Sang-Bae;Xu, Shuting;Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.351-361
    • /
    • 2010
  • The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.