• Title/Summary/Keyword: Iron Ore Sintering

Search Result 25, Processing Time 0.037 seconds

Modeling Approach of Solid Particle Bed for the Combustion Environment Control (고체 입자 베드 내 반응 환경 변화를 위한 모델링 접근 방법)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.21-23
    • /
    • 2013
  • Various solid particle materials are treated in the industrial processes including fixed-beds or moving grate beds, and modeling approaches have been widely applied to the processes to predict and evaluate their performance. For this study, the modeling approach was applied to iron ore sintering process with various improvement measures. Based on the previous modeling approach, the changes and effects of the improvement measures were discussed at the point of controlling the combustion environment in the bed.

  • PDF

Effect of Additional Gaseous Fuel in Iron Ore Sinter Process (제철 소결 공정에서 추가 가스 연료 주입에 따른 영향)

  • Lee, Younghun;Choi, Sangmin;Yang, Won;Cho, Byungkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.21-24
    • /
    • 2012
  • In the iron ore sinter process, temperature distribution pattern in sintering bed is related with productivity and quality of sintered ore. Evenly heat distribution make the uniform quality of sintered ore but in normal operating condition, upper part of bed has lack of heat and scarce quality of sintered ore, thus yeild rate is decreased and productivity is diminished. Therefore, using the additional fuel in the upper part of bed is considered and effect of fuel is discussed. (max. 80 words).

  • PDF

Analysis of the Thermal Processes in the Iron-Making Facility - Modeling Approach (제선 설비의 열공정 해석 모델링 접근 방법)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min;Choi, Eung-Soo;Ri, Deok-Won;Huh, Wan-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.747-754
    • /
    • 2004
  • Thermo-fluid characteristics in coke oven, sintering machine and blast furnace in iron-making facility are key processes related to the quality and productivity of the pig iron. Solid material in the processes usually forms a bed in a gas flow. For simulation of the processes by mathematical model, the solid beds are idealized to be a continuum and a reacting solid flow in the gas flow. Governing equations in the form of partial differential equations for the solid material can be constructed based on this assumption. Iron ore sintering bed is simulated and limited amount of parametric study have been performed. The results have a good agreement with the experimental results or physical phenomena, which shows the validity and applicability of the model.

Numerical Analysis of Sintering Bed Combustion; Applying Supplying Gaseous Fuel and Flue Gas Recirculation Processes (소결 베드 연소 수치해석의 확장 - 가스 연료 주입 및 배가스 재순환 공정 적용)

  • Lee, Younghun;Yang, Won;Cho, Byungkook;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.9-13
    • /
    • 2012
  • In the iron ore sinter process, temperature distribution pattern in sintering bed is related with productivity and quality of sintered ore. Evenly heat distribution make the uniform quality of sintered ore but in normal operating condition, upper part of bed has lack of heat and scarce quality of sintered ore, thus yeild rate is decreased and productivity is diminished. Therefore, using the additional fuel for increasing quality and flue gas recirculation for increasing productivity are considered and effect of both processes are discussed.

  • PDF

Purification of Iron Oxides and Application to Magnetic Hard Ferrite

  • Kim, Jeong-Seog;Chou, Kyoung-Ho;Kim, Jai-Young
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.125-130
    • /
    • 1996
  • Hematite iron ore and waste iron oxide sludge containing about 3-5 wt% $SiO_2$ were purified by three types of method developed on the basis of the Bayer process which is known as the purification process of bauxite ore. The basic principle of the developed methods lies in the fact that the impurities contained in the iron oxides, such as $SiO_2$ and $Al_2O_3$ are soluble in the alkaline reagents. Reaction of the raw materials with KOH was done in pressure vessel, at atmospheric pressure, and by both of these two. By the pressure vessel method $SiO_2$ content was reduced to below 0.5 wt% in the waste iron oxide sludge, while, in iron ore, $SiO_2$ remained at 2-3 wt%. The atmospheric pressure reaction rendered the waste iron oxide sludge $SiO_2$ content below 0.5wt% when the reaction temperature increased to above 90$0^{\circ}C$. The combined method of two previous methods was the most effective process and rendered the refined iron oxide about 300-400ppm of $SiO_2$. Using some refined iron oxides, Ba-ferrite was produced and magnetic properties were measured. The highest quality of magnetic properties obtained in this study were Br=2.09 G, bHc=1.99 KOe, iHc=4.54 KOe, $(BH)_{max}$=1.06 MGOe. Effect of sintering condition and chemical composition will be discussed.

  • PDF

Recyling of Waste Materials for Iron Ore Sintering (제철소내 폐기물의 소결공정에서의 이용기술)

  • 문석민;이대열;정원섭;신형기
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.12-20
    • /
    • 1994
  • Difficulties lies on using the dust from iron making process as a raw material for sintering process mainly because of high amount of Zn or alkali content and its ultra fine characteristics. To eliminate these toxic influence, new fluxing materials were tested and could get a very successful results. This fluxing materials, Calcium-ferrite of magnesio-ferrite were made from various waste materials such as lime stone sludge, bag filter dust, waste EP dust and dolomite sludge by simple way of pre-sintering. Sintering behavior as a fluxing materials was revealed to be good in any aspects and new concept of total recycling system could be established.

  • PDF

Industrial Solids Processing Applications - Particle Reaction Models and Bed Reactor Models (산업용 고체 처리 공정 - 입자 반응 및 고정층 반응기 모델링)

  • Ahn, Hyungjun;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.27-35
    • /
    • 2017
  • This paper reviews the previous industrial solid bed process simulations to provide a better understanding of the modeling approaches to the particle reactions in the bed. Previous modeling studies on waste incinerator, iron ore sintering bed, blast furnace, iron ore pellet indurator, and biomass combustor can be seen on the common ground of unsteady 1-D modeling scheme. Approaches to the particle reaction modeling have been discussed in terms of the status of solid particles in the bed, types of reaction progression in a particle, and the consideration of the intra-particle temperature gradient.

Combustion Modeling of a Solid Fuel Bed with Consideration of the Multiple Solid Phases (다중 고체상을 고려한 고체 연료층 연소 모델링)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.119-127
    • /
    • 2003
  • In this study we propose an unsteady I-dimensional model of bed combustion with multiple solid phases, which confers a phase on each solid material. This model can be applied to a variety of bed combustion cases of various configurations and ignition methods. It contains fuel combustion, gaseous reaction, heat transfers between each phase, and geometric changes of the solid particles. An iron ore sintering pot is selected for verifying the model validity and simulation results are compared with the limited experimental data set of various coke contents and air supply rates. They predict the experimental results well and show applicabilities to the various system of the fuel bed with various solid materials.

  • PDF

The Properties of Synthetic Calcium Ferrite for Ironmaking and Steelmaking using Industrial By-products - (1) (산업부산물을 활용한 제철·제강용 합성 칼슘 페라이트 특성 - (1))

  • Park, Soo Hyun;Chu, Yong Sik;Seo, Sung Kwan;Park, Jae Wan
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.3-11
    • /
    • 2014
  • Calcium ferrite is more effective binder for making sintered ore and flux for steel making because of it's low melting temperature. In this Study, calcium ferrite was made by calcinating method in the cement manufacturing process in order to reduce manufacturing costs and increase productivity. Limestone and calcination sludge were used as CaO source, steelmaking sludge, blast furnace dust and iron ore were used as Fe-bearing raw materials. The sintering temperature of specimens is in the range of $950{\sim}1170^{\circ}C$. For Calcium ferrite can be used 'binder for making sintered ore' or 'flux for converter/electric furnace' with a low melting point properties, the raw material characteristics and sintering properties were investigated.