DOI QR코드

DOI QR Code

The Properties of Synthetic Calcium Ferrite for Ironmaking and Steelmaking using Industrial By-products - (1)

산업부산물을 활용한 제철·제강용 합성 칼슘 페라이트 특성 - (1)

  • Park, Soo Hyun (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong Sik (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Seo, Sung Kwan (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Park, Jae Wan (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.)
  • 박수현 (한국세라믹기술원 에너지환경소재본부) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부) ;
  • 서성관 (한국세라믹기술원 에너지환경소재본부) ;
  • 박재완 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2013.08.29
  • Accepted : 2014.10.13
  • Published : 2014.10.30

Abstract

Calcium ferrite is more effective binder for making sintered ore and flux for steel making because of it's low melting temperature. In this Study, calcium ferrite was made by calcinating method in the cement manufacturing process in order to reduce manufacturing costs and increase productivity. Limestone and calcination sludge were used as CaO source, steelmaking sludge, blast furnace dust and iron ore were used as Fe-bearing raw materials. The sintering temperature of specimens is in the range of $950{\sim}1170^{\circ}C$. For Calcium ferrite can be used 'binder for making sintered ore' or 'flux for converter/electric furnace' with a low melting point properties, the raw material characteristics and sintering properties were investigated.

칼슘 페라이트는 기존 소결광용 결합제 및 제강용 융제보다 용융온도가 낮아 결합제 및 융제로서의 효과가 우수하다. 본 연구에서는 제조비용절감과 생산성 증대를 위해 기존 용융법이 아닌 시멘트 제조공정에서의 소성법으로 칼슘 페라이트를 제조하였다. 칼슘페라이트의 석회질 원료로 소성슬러지 및 석회석을 사용하였고, 철질 원료로 제강슬러지, 고로분진 및 철광석을 사용하였다. 이때 소성온도는 $950{\sim}1170^{\circ}C$이며, 저융점 특성을 가진 '소결광용 결합제' 또는 '전로 및 전기로용 융제'로의 사용 가능성을 검토하고자 원료를 분석하고 소결 특성을 평가하였다.

Keywords

References

  1. F. Matsuno, T. Harada, 1981 : Change of mineral phases during the sintering of iron ore-lime stone systems, Transactions of the Iron and Steel Institute of Japan, 21, pp. 318-325. https://doi.org/10.2355/isijinternational1966.21.318
  2. L. H. Hsieh, J. A. Whiteman, 1989 : Effect of oxygen potential on mineral formation in lime-fluxed iron ore sinter, ISIJ International, 29, pp. 625-634. https://doi.org/10.2355/isijinternational.29.625
  3. L. H. Hsieh, 2005 : Effect of raw material composition on the sintering properties, ISIJ International, 45, pp. 551-559. https://doi.org/10.2355/isijinternational.45.551
  4. J. K. Litster, A. G. Waters, 1988 : Influence of the material properties of iron ore sinter feed on granulation effectiveness, Powder Technology., 55, pp. 141-151. https://doi.org/10.1016/0032-5910(88)80097-4
  5. Y. Takeda, S. Nakazawa, A. Yazawa, 1980 : Thermodynamics of calcium ferrite slag at 1200 and $1300^{\circ}C$, Canadian Metallurgical Quarterly, 19, pp. 297-305. https://doi.org/10.1179/cmq.1980.19.3.297
  6. H. P. Pimenta, V. Seshadri, 2002 : Characterization of structure of iron ore sinter and its behaviour during reduction at low temperatures, Ironmaking and Steelmaking, 29, pp. 169-174. https://doi.org/10.1179/030192302225002009
  7. I. Shigaki, M. Sawada, N. Gennai, 1986 : Increase in lowtemperature reduction of iron ore sinter due to hematitealumina solid solution and columnar calcium ferrite, Transactions of the Iron and Steel Institute of Japan, 26, pp. 503-511. https://doi.org/10.2355/isijinternational1966.26.503
  8. H. Wang, Y. Zhang, 1999 : Measures to reduce energy consumption of sintering process, Iron and Steel, 01, pp. 5-11.
  9. D. Hirabayashi, et. al., 2006 : Characterization and application of calcium ferrites based materials containing active oxygen species, Advances in Science and Technology, 45, pp. 2169-2175. https://doi.org/10.4028/www.scientific.net/AST.45.2169
  10. J. W. Jeon, S. M. Jung, Y. Sasaki, 2010 : Formation of calcium ferrite under controlled oxygen potentials at 1273K, ISIJ International, 50, pp. 1064-1070. https://doi.org/10.2355/isijinternational.50.1064