DOI QR코드

DOI QR Code

The Properties of Synthetic Calcium Ferrite for Ironmaking and Steelmaking using Industrial By-products - (2)

산업부산물을 활용한 제철·제강용 합성 칼슘 페라이트 특성 - (2)

  • Park, Soo Hyun (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong Sik (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Seo, Sung Kwan (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Park, Jae Wan (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.)
  • 박수현 (한국세라믹기술원 에너지환경소재본부) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부) ;
  • 서성관 (한국세라믹기술원 에너지환경소재본부) ;
  • 박재완 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2013.08.29
  • Accepted : 2014.10.13
  • Published : 2014.10.30

Abstract

Calcium ferrite is a major bonding material self-fluxed sintered ore, and it is used as a flux in the steelmaking process. Calcium ferrite is more effective binder for making sintered ore and flux for steel making because of it's low melting temperature. In this Study, calcium ferrite was made by using variety industrial by-products from steel plant. The property of calcium ferrites was investigated on the basis of test method using in the cement manufacturing process. Crystal analysis, compression test as well as thermal analysis were carried out to evaluate physical properties of calcium ferrite.

칼슘 페라이트는 소결광 제조 시 생성되는 자용성 소결 광물의 일종으로, 제철 공정의 소결광용 결합제 및 제강용 융제로 사용된다. 기존 소결광용 결합제 및 제강용 융제보다 용융온도가 낮아 결합제 및 융제로서의 효과가 우수하다. 본 연구에서는 제철공정에서 발생하는 다양한 산업부산물을 시작원료로 사용하여 칼슘 페라이트를 제조하였다. 칼슘 페라이트 물성을 분석 평가하기 위해, 시멘트 제조공정 시험법을 준용하였다. 더불어 칼슘 페라이트의 물성을 평가하기 위해 결정분석, 파괴하중, 열분석 등을 시행하였다.

Keywords

References

  1. S. Sato, et. al., 1986 : Melting model for iron ore sintering, Transactions of the Iron and Steel Institute of Japan, 26, pp. 282-290. https://doi.org/10.2355/isijinternational1966.26.282
  2. K. Higuchi, et. al., 2003 : Influence of iron ore characteristics on penetrating behavior of melt into ore layer, ISIJ International, 43, pp. 1384-1392. https://doi.org/10.2355/isijinternational.43.1384
  3. K. Higuchi, et. al., 2006 : Quality improvement of sintered ore in relation to blast furnace operation, Nippon Steel Technical Report, 94, pp. 36-41.
  4. Y. Takeda, S. Nakazawa, A. Yazawa, 1980 : Thermodynamics of calcium ferrite slag at 1200 and $1300^{\circ}C$, Canadian Metallurgical Quarterly, 19, pp. 297-305. https://doi.org/10.1179/cmq.1980.19.3.297
  5. H. P. Pimenta, V. Seshadri, 2002 : Characterization of structure of iron ore sinter and its behaviour during reduction at low temperatures, Ironmaking and Steelmaking, 29, pp. 169-174. https://doi.org/10.1179/030192302225002009
  6. I. Shigaki, M. Sawada, N. Gennai, 1986 : Increase in lowtemperature reduction of iron ore sinter due to hematitealumina solid solution and columnar calcium ferrite, Transactions of the Iron and Steel Institute of Japan, 26, pp. 503-511. https://doi.org/10.2355/isijinternational1966.26.503
  7. H. Wang, Y. Zhang, 1999 : Measures to reduce energy consumption of sintering process, Iron and Steel, 01, pp. 5-11.
  8. S. Lian, et. al., 2006 : Research of reduction behavior of binary calcium ferrite, Sintering and Pelletizing, 04, pp. 12-18.
  9. D. E. Rogers, L. P. Aldridge, 1977 : Hydrates of calcium ferrite and calcium aluminoferrites, Cement and Concrete Research, 7, pp. 399-409. https://doi.org/10.1016/0008-8846(77)90068-0
  10. H. Shi, Y. Zhao, W, Li, 2002 : Effects of temperature on the hydration characteristics of free lime, Cement and Concrete Research, 32, pp. 789-793. https://doi.org/10.1016/S0008-8846(02)00714-7
  11. J. W. Jeon, S. M. Jung, Y. Sasaki, 2010 : Formation of calcium ferrite under controlled oxygen potentials at 1273K, ISIJ International, 50, pp. 1064-1070. https://doi.org/10.2355/isijinternational.50.1064
  12. E. Kasai, et. al., 1997 : Thermal analysis of the sintering reactions of iron-ores, Tetsu to Hagane, 83, pp. 539-544. https://doi.org/10.2355/tetsutohagane1955.83.9_539