• Title/Summary/Keyword: IoT server

Search Result 364, Processing Time 0.025 seconds

Power Efficient IoT (Internet of Things) System using the RF433 Wireless Sensor Network and ARDUINO YUN as the Gateway (RF433 무선 센서 네트워크 및 ARDUINO YUN을 활용한 전력 효율적인 IoT 시스템)

  • Choi, Eun-Seok;Shim, Jae-Ryong;Chang, Sek-Chin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.719-722
    • /
    • 2016
  • These days there have been trying to fuse the various of IoT (Internet of Things) technology over the industrial field. However the complicated IoT System structure comprised of sensor devices, gateway, network server, and application server causes the difficulties to the system implementation and the increment of installation cost, thereby preventing IoT system deployment in the industry fit for small size network environment. In this paper, authors propose a novel IoT system architecture that is useful in the industry field to be implemented by the small size network with low cost. Also, we implement the infrastructure to RF433 wireless sensor network, the gateway on ARDUINO YUN, and the application server using AMP (Apache, PHP, MySQL) package and then present a power efficient management scheme for sensor devices.

  • PDF

A Comparison of the Construction for IoT System in Smart Clothing

  • Ko, Jooyoung;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.2 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Recently, as microcomputers and sensors have been miniaturized due to dropdown of their market rates, this lead to a favorable environment for implementing the Internet of Things. Smart clothing refers to a system which can be wearable or portable, and allows people to communicate or conduct sensing. Applying the Internet of things, the role of the server computer is to receive and process data obtained from the sensor. An ordinary PC can act as a server but during the implementation of IoT, a PC has limited application due to a large size and the inconvenient portability. This study proposes a model that allows a variety of functions while implementation with the server from the sensing using the Arduino and Raspberry Pi. If we apply this proposed model, everyone can easily and inexpensively experience mobile IoT system.

Real-Time Monitoring and Control System of Server Room based on IoT (IoT를 기반으로 하는 서버 룸 실시간 모니터링 및 제어 시스템)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.7-13
    • /
    • 2020
  • In this paper, we propose a system that monitors and controls the environment of a server room in real-time based on IoT. Recently, as the information society has been maximized, the damage has been significant when the computer system is down. In particular, damage such as a fire in the server room leads to loss of data and data recovery becomes impossible. In order to reduce such damage, a node capable of real-time monitoring using an IoT system was proposed. In addition, we proposed a coordinator node that can collect and monitor node information. In order to verify that the proposed system works, we have developed software that can control node monitoring and air conditioning. As a result of the experiment, we confirmed that the proposed system detects fire and controls the air conditioner.

Design of IoT Gateway based Event-Driven Architecture for Intelligent Buildings. (IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.256-259
    • /
    • 2016
  • The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT applications. For instance, home automation controlling system uses client system such web apps on smartphone or web service to access the home server by sending control commands. The home server receives the command, then controls for instance the light system. The gateway based RESTful technology responsible for handling clients' requests attests an internet latency in case a large number of clients' requests submit toward the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with support for messages passing between concurrent objects. We also investigate the performance of event-driven architecture for building IoT gateway using node.js on one side and communication protocol based message-oriented middleware known as XMPP to handle communications of intelligent building control devices connected to the gateway through a centralized hub. The Node.JS is 40% faster than the traditional web server side features thread-based approach. The use of Node.js server-side handles a large number of clients' requests, then therefore, reduces delay in performing predefined actions automatically in intelligent building IoT environment.

  • PDF

Resource Allocation Algorithm for IoT Distributed Processing (IoT 분산 처리를 위한 자원 할당 알고리즘)

  • Yu, Donggyun;Jeong, Dohyeong;Choi, Hyungwook;Lim, Jaedon;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.723-724
    • /
    • 2017
  • Recently, researches are being conducted to build a smart environment using various sensors and devices and to provide customized services to users through inter object communication. However, the existing system utilizes a centralized method of transmitting measured sensor data in real time to the server and processing it in batches and As the system is expanded, there is a problem that a high-end server must be configured. In this paper, we design a Resource Allocation Algorithm for IoT distributed processing environment to solve these problems. The resources required for the device to operate are transferred to the server and the server allocates resources in comparison to the task in progress. Therefore, it is expected that the data throughput of the server will be reduced and various devices can be configured in a server having a low specification.

  • PDF

IoT Equipment Implementation for OBD Car Diagnostic Information (OBD 차량 진단 정보를 위한 IoT 장치 구현)

  • Lee, Seong-Hee;Lee, Seong-Hyung;Lee, Sang-Moon;Hwang, Seung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1851-1857
    • /
    • 2016
  • Existing devices are capable of communicating the OBD information only inside or close to the vehicle without supporting the data transmission to a external server. In this paper, we describe the implementation of IoT device, which can communicate the OBD information to the external server.

Subnet Generation Scheme based on Deep Learing for Healthcare Information Gathering (헬스케어 정보 수집을 위한 딥 러닝 기반의 서브넷 구축 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.221-228
    • /
    • 2017
  • With the recent development of IoT technology, medical services using IoT technology are increasing in many medical institutions providing health care services. However, as the number of IoT sensors attached to the user body increases, the healthcare information transmitted to the server becomes complicated, thereby increasing the time required for analyzing the user's healthcare information in the server. In this paper, we propose a deep learning based health care information management method to collect and process healthcare information in a server for a large amount of healthcare information delivered through a user - attached IoT device. The proposed scheme constructs a subnet according to the attribute value by assigning an attribute value to the healthcare information transmitted to the server, and extracts the association information between the subnets as a seed and groups them into a hierarchical structure. The server extracts optimized information that can improve the observation speed and accuracy of user's treatment and prescription by using deep running of grouped healthcare information. As a result of the performance evaluation, the proposed method shows that the processing speed of the medical service operated in the healthcare service model is improved by 14.1% on average and the server overhead is 6.7% lower than the conventional technique. The accuracy of healthcare information extraction was 10.1% higher than the conventional method.

A Design of the Platform Technology for the Smart Shopping Mall Using NFC: A Software Engineering Approach

  • Je, Seung-Mo;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • An IoT-based server system for store management was developed in this study. Its client-server structure having a product categorization function allows the system to read the NFC tags attached to individual products and provides information about them to customers automatically. The system also provides an effective promotional effect as it not only offers necessary information about the items the customers are seeking but also displays the advertisements related to them. This server system was designed specifically designed for the use in a smart shopping Mall or a department store so that the store owners can manage their sales operation more effectively while their customers enjoy shopping more conveniently. It is expected that the technology used for this IoT-utilized server system can be one of the efficient and effective platform technologies in the current and future store management systems.

Development of a Fault-tolerant IoT System Based on the EVENODD Method (EVENODD 방법 기반 결함허용 사물인터넷 시스템 개발)

  • Woo, Min-Woo;Park, KeeHyun;An, Donghyeok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • The concept of Internet of Things (IoT) has been increasingly popular these days, and its areas of application have been broadened. However, if the data stored in an IoT system is damaged and cannot be recovered, our society would suffer considerable damages and chaos. Thus far, most of the studies on fault-tolerance have been focused on computer systems, and there has not been much research on fault-tolerance for IoT systems. In this study, therefore, a fault-tolerance method in IoT environments is proposed. In other words, based on the EVENODD method, one of the traditional fault-tolerance methods, a fault-tolerance storage and recovery method for the data stored in the IoT server is proposed, and the method is implemented on an oneM2M IoT system. The fault-tolerance method proposed in this paper consists of two phases - fault-tolerant data storage and recovery. In the fault-tolerant data storage phase, some F-T gateways are designated and fault-tolerant data are distributed in the F-T gateways' storage using the EVENODD method. In the fault-tolerant recovery phase, the IoT server initiates the recovery procedure after it receives fault-tolerant data from non-faulty F-T gateways. In other words, an EVENODD array is reconstructed and received data are merged to obtain the original data.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.