
- 256 -

IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계

라이오넬* · 장종욱*

*동의대학교

Design of IoT Gateway based Event-Driven Architecture for Intelligent Buildings.

Lionel Nkenyereye* · Jong-Wook Jang*

*Dong-Eui University

E-mail : lionelnk82@gmail.com, jwjang@deu.ac.kr

요 약

모바일 기기는 사물 인터넷으로 성장하여 지능형 건물과 관련된 많은 IoT 응용 프로그램으로 연계 된
다. 예를 들어 주택 자동화 제어 시스템은 스마트 폰으로 제어 명령을 보냄으로써, 홈 서버에 액세스
를 하는 클라이언트 구조의 웹 어플리케이션을 요구한다. 홈 서버는 광 통신 시스템으로 명령어를 수
신 받고 컨트롤 한다. 게이트웨이 기반 REST 기술은 클라이언트에서 요청하는 명령어를 처리 및 증명
해야 한다. 이러한 이유는 클라이언트 요청에 의해 다수의 게이트웨이 증가로 인한 인터넷이 지연 되
기 때문이다.
본 논문에서는 동시성 이벤트를 처리하기 위한 IoT 게이트웨이 시스템 설계를 하고자 한다. 본 시스템
을 통하여 동시성 최고의 다중 추상화 레벨을 확인 할 수 있다. 동시성을 확인하는 방법은 개체 간의
데이터 통신을 지원하는 객체 지향 시스템을 구축하는 것이다. 또한 IoT 게이트웨이 기반으로 양방향
통신 방법 중 한쪽 통신 방향 프로토콜에 Node.js를 사용하여 이벤트 중심, 지능형 건물의 설계를 위
한 아키텍쳐의 성능을 XMPP라는 미들웨어를 사용하여 확인하고자 한다. Node.js는 지능형 건물 제어
장치가 중앙 집중화 형식의 허브를 통하여 통신이 될 수 있도록 하는 역할을 가지고 있다. Node.js는
스레드 기반의 접근 방식이 특징이며, 기존의 시스템보다 40% 이상 빠르다. Node.js를 서버 측에서 사
용하기 위해 다수의 클라이언트 들로부터 요청을 한다. 따라서, IoT 환경에서 지능형 건축물의 작업
수행 시간을 감소 시킨다.

ABSTRACT

 The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT

applications. For instance, home automation controlling system uses client system such web apps on smartphone
or web service to access the home server by sending control commands. The home server receives the
command, then controls for instance the light system. The gateway based RESTful technology responsible for
handling clients’ requests attests an internet latency in case a large number of clients’ requests submit toward
the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency
events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of
abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with
support for messages passing between concurrent objects. We also investigate the performance of event-driven
architecture for building IoT gateway using node.js on one side and communication protocol based
message-oriented middleware known as XMPP to handle communications of intelligent building control devices
connected to the gateway through a centralized hub. The Node.JS is 40% faster than the traditional web server
side features thread-based approach. The use of Node.js server-side handles a large number of clients’
requests, then therefore, reduces delay in performing predefined actions automatically in intelligent building IoT

environment.

키워드

IoT Gateway, Event-driven Architecture, Node.js, Intelligent buildings system, XMPP, Internet of Things.

IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계

- 257 -

Ⅰ. Introduction

The intelligent buildings refers to a range

of Internet of Things (IoT) applications such as

automatic energy metering, home automation

and wireless monitoring. Traditionally, the

intelligent buildings system use gateway based

client server architecture such as web-based

mobile application or web service to handle

commands to control devices in IoT

environment. As the number of clients’ requests

increases in simultaneously manner, the

Representation State Transfer (REST)

architecture to handle those requests encounters

limitations for performing them successfully,

and therefore, slows down predefined actions

that take automatically without the help of

humans.

This paper focuses on designing a prototype

architecture for a gateway and its components

of intelligent buildings for IoT applications. The

model that we are looking for should have a

gateway component with the ability of

processing several requests from multiple smart

devices simultaneously without blocking and

long execution requests. These features are

essential for reducing communication costs. In

server-side asynchronous event-driven programming

[2], the user requests are treated as application

events and inserted into an event queue. This

event-driven model has been widely adopted in

building scalable web applications, mainly

through the Node.js [1] framework. The

real-time communication allows the implementation

of eXtensible Messaging and Presence Protocol

(XMPP) to support the IoT device management

framework [3]. The implementation of XMPP

provides near-real-time communication between

multiple devices over multiple networks

Ⅱ. Prototype Architecture for
Intelligent Buildings related IoT

applications with its gateway

The design prototype shown in Fig. 1 consists

of database and virtual machines as resources

to carry out several functions from the

intelligent building controls units. The

intelligent building controls units are

responsible of sending the measurement of

sensors installed on the microcontroller boards.

The components on the cloud store readings

and status of these intelligent building control

units (IBCU) periodically for further analysis.

The components on the cloud are also

responsible of sending control and monitoring

commands to the sensors connected to these

IBCUs. The IBCUs are the IoT devices nodes

in charge of manage the data to be sent to

the management components services on the

cloud. Every IBCUs connected to the Wi-Fi

network uses a unique IP address that can be

used to reach that IBCU. At the IBCUs level,

basic instructions are implemented in order to

pre-process information on the main gateway.

The client application accessible anywhere

through either wearable device or mobile

device discovers all the connected IBCUs and

enables the user to start interacting with

them. Each IBCUs broadcasts itself over the

network so that the cloud services can

discover these IBCUs for reporting to the

Figure 1 A prototype architecture for

Intelligent Buildings (energy metering, home

automation, wireless monitoring) related IoT

environment.

한국정보통신학회 2016 추계종합학술대회

- 258 -

user.

The Raspberry Pi 3 is the main gateway,

whose is to interconnect the IBCUs to the

network providers’ infrastructure of the

system. This gateway runs a node.js in order

to process a large number of concurrent

connections from the end users using the

intelligent building applications. The web

socket ensures the communication between the

cloud services and the raspberry Pi through

an encrypted secure shell (SSH) tunnel. This

gateway is also in charge of sending

instruction set which is in the format of

commands that can be communicated for

performing automatic configuration when a

new IBCU is connected to the intelligent

building related IoT system. The instructions

are implemented in JavaScript and are

communicated to the microcontroller board

(Arduino) devices to request sensors readings

or to send commands to control the peripheral

sensors.

Finally, the end users are able to interact with

the whole intelligent building related IoT

applications using a secured REST API, using

mobile device and connected wearable devices.

A smartphone application through cloud

services that give access to the gateway made

for the purpose of controlling all the IBCUs

currently available on the network. This is

done by the functionality of the XMPP

protocol. Upon retrieving the IBCUs and make

request over the network in the form of

messages that are sent to the IBCUs through

the centralized hub.

Ⅲ. Performance Investigation of IoT
gateway implemented using server-side
framework based Event-driven against

no JavaScript server side

To measure the performance of different use

cases the program Apache JMeter 2.712 was

used [4]. The component under test was the

main back end server. The simulation of

client-server architecture is presented on the

Fig. 2. It shows a Node.Js request to write

and query data from database.

In this paper, we have considered three kind

of Client-Server Architecture that provides

backend for server-side implementation and

database layers. The web service functions on

Node.js would collect data from the client

system such as web service or web-based

application on smartphone. The peak load

testing scenarios state is shown in the table 1

Figure 3 The performance of the three model

client-server Architecture. The measurement

metrics are the throughput and response

time

The Figure 3 shows the results of the

three Client-Server Architecture configuration.

To this performance, we analyze the

Figure 2 A deployment diagram of a

Node.js system. It depicts Asynchronous

Http client and communicate with the

Node.js server application running on

windows server.

IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계

- 259 -

throughput and response time metrics. The

Node.js-JavaScript-MongoDB configuration

outperforms.

For this architecture, from 200 up to 2000

concurrent users (from 10000 to 100000

requests), the response time is high within

173ms but the throughput in comparison to

the response time is less low with 164

requests per second. This signifies that this

Client-Server Architecture is capable enough

to sustain a large number of concurrent

clients ‘requests. The Apache

Tomcat-JSP-MySQL has a higher response

time but the throughput is much lower within

117 requests per second. This signifies that

this Client-Server Architecture is not capable

enough to execute concurrent requests. The

third model that include Apache at server-side

and MongoDB as database outperforms less

better in comparison to

Node.js-JavaScript-MongoDB but better than

Apache Tomcat-MySQL. Therefore, Node.JS

is roughly 40% faster, for example 164

responses per second against 117ms for 2000

users that corresponds to one hundred

thousand (100000) concurrent requests.

IⅤ. Conclusions and Future Work

This paper presented a design a prototype

architecture for intelligent building that attests

the capability of performing a large number of

users accessing the intelligent buildings

system concurrently. The XMPP protocol

allows multiple connected devices to provide

real-time communications over multiple

networks. With the use of Node.js, an

increasing number of requests should not have

a negative effect when the information

collected from sensors embedded in multiple

connected devices is used as rule engines that

support the formulation of decision logics.

Acknowledgment

This work was supported by the Brain
Busan 21 Project in 2016. This also work
was supported by Nurimaru R&BD project
(Busan IT Industry Promotion Agency) in
2016

References

[1] Yuhao, Z., Daniel, R., Matthew, H.,

Vijay,J.R., Microarchitectural implications

of event-driven server-side web

applications, Proceedings of the 48th

International Symposium on

Microarchitecture, (2015), 762-774.

[2] Dabek, N., Zeldovich, N., Kaashoek, F.,

Mazieres, D. and Morris, R., Event-driven

programming for robust software. Proceeding

of SIGOPS. European Workshop, (2002),

186-189.

 [3] Sung-Chan, C., Jaeho, K., Jaeseok, Y.

and El-Yeop, A., A Tutorial for

Energy-efficient Communication for

XMPP-based Internet of Things. Smart

Computing Review, 306 (2013), 471-479.

[4]Emily H,H., “Apache JMeter. A practical

beginner’s guide to automated testing and

performance measurement for your websites,

PACKTPUBLISHING,BIRMINGHAM-MUMBA

I, pp:1-138,2008

