• Title/Summary/Keyword: IoT based monitoring and control

Search Result 96, Processing Time 0.026 seconds

Distributing Board Monitoring System based on Internet of Things (사물인터넷 기반 수배전반 상태 모니터링 시스템)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.200-206
    • /
    • 2016
  • It is necessary to develop a real-time monitoring system for electric facilities, operating and managing system for the accident prevention of electrical demand facilities anytime, anywhere. In this paper, we propose the implementation of distributing board monitoring system based on Internet of Things(IoT). The proposed system is installed in existing distributing board that it can transmit status information of distributing board and control information through the cloud server and the wireless local area network. The distributing board monitoring system can monitor and control the condition of distributing board by system administrator. The results show that the margin of error was ${\pm}5%$ in performance evaluation.

oneM2M Standard based Low Altitude Drone/UAV Traffic Management System (oneM2M 표준 기반 저고도 무인기 관리 및 운영시스템)

  • Ahn, Il-Yeop;Park, Jong-Hong;Sung, Nak-Myoung;Kim, Jaeho;Choi, Sung-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.301-307
    • /
    • 2018
  • Unmanned Aerial Vehicles (i.e., drone) are gaining a lot of interest from a wide range of application domains such as infrastructure monitoring and parcel delivery service. In those service scenarios, multiple UAVs are involved and should be reliably operated by so-called UAV management system. For that, we propose oneM2M standard based UAV management and control system which is specifically targeted at traffic management of low-altitude UAVs. In this paper, we include oneM2M platform architecture and its implementation for UAV management system in conjunction with UAV interworking procedure.

A Study on the Implementation of an Android-based Educational IoT Smartfarm (안드로이드 기반 교육용 IoT 스마트팜 구현에 관한 연구)

  • Park, Se-Jun
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.42-50
    • /
    • 2021
  • Recently, the need to introduce smart farms is increasing in order to solve the problems of intensifying competition such as a decrease in rural population due to aging, a decrease in production, and the inflow of foreign agricultural products, and accordingly, the need for education is increasing. This paper is a study on the implementation of an Android-based IoT smart farm for education so that it can be used in a real environment by reducing the farm's smart farm system. To confirm that Android-based education can be applied in a real environment using the IoT smart farm for education, experiments were performed in automatic mode and manual mode using Bluetooth, Wi-Fi, and server/client communication methods. In the automatic mode, the current status can be checked in real time by receiving all data, and in the manual mode, commands are transmitted in real time using the received sensor data and remote control is performed. As a result of the experiment, it was possible to understand the characteristics of each communication method, and it was confirmed that remote monitoring and remote control of the smart farm using the Android App was possible.

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Construction and Development of IoT-based Home Gas Equipment Safety Platform Service (IoT 기반 가정 가스시설 안전 플랫폼 서비스 구축 및 개발)

  • Oh, Jeong-Seok;Baek, Dong-Seok;Park, Tae-Jun;Kim, Jong-Hyeok
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.15-23
    • /
    • 2019
  • 42.5% of domestic gas accident due to human factors, and 38% occurred in residential area. Also gas accident caused by deterioration / malfunction increased more than 2 times for last 1 year. In this study we developed IoT based gas safety platform service for Home-gas safety, which secured 99.32% of data transmit accuracy, monitoring and remote control through LPWA bidirectional communication.

Embedded System for Mobile Phone-based Control and Monitoring (모바일 폰 기반의 제어 및 모니터링을 위한 임베디드 시스템)

  • Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.288-289
    • /
    • 2018
  • The use of IoT (Internet of Things) is rapidly expanding to enhance the quality of life as seen in the interconnection between mobile devices and Web. This paper proposes an embedded system that connects sensors and mobile devices via IoT technology, improving the user's ability and service experience to remotely control the home appliances with mobile-detection features. Home appliances are expected to increase labor efficiency by utilizing the embedded system connected to the sensors. Using mobile applications to control home appliances remotely and to monitor operation status advances the user's knowledge, experience, and perspectives to experience refined life qualities.

  • PDF

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

Development and Performance Evaluation of Multiple Sensor for Groundwater Quality Monitoring and Remote Control System using IoT (IoT기반 지하수 수질모니터링을 위한 다중센서모듈 개발 및 성능평가)

  • Chang, Hyunjin;Moon, Boram;Yoon, Seunggyun;Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1957-1963
    • /
    • 2017
  • This paper has proposed a new-type groundwater auto-monitoring system based on Multi-Sensor Device. The system adopted Multi-Sensor Device as host computer of data acquisition, used Windows Mobile which was prevalent operation system of Multi-Sensor Device. It adopted serial port CAN and RS485 as the communication interface between goundwater sensor Device and monitor host machine and utilized serial-linked multi-sensor design to measure effectively according to the depth of groundwater. We present a design for a groundwater monitoring system based on a network of wirelessly linked sensors. The proposed solution will enable groundwater researchers and decision makers to have quick access to the groundwater data with less effort and cost. Though our design is initially meant for groundwater monitoring, it can be easily adapted to other fields of environmental monitoring.