• Title/Summary/Keyword: IoT (internet of things)

Search Result 1,917, Processing Time 0.028 seconds

Rule Configuration in Self Adaptive System using SWRL (SWRL을 이용한 자가 적응 시스템 내에서의 룰 구성)

  • Park, Young B.;An, Jung Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • With the development of the Internet of Things technology, a system that ensures the self-adaptability of an environment that includes various IoT devices is attracting public attention. The rules for determining behavior rules in existing self-adaptation systems are based on the assumption of changes in system members and environment. However, in the IoT environment, flexibility is required to determine the behavior rules of various types of IoT devices that change in real time. In this paper, we propose a rule configuration in a self-adaptive system using SWRL based on OWL ontology. The self-adaptive system using the OWL - SWRL rule configuration has two advantages. The first is based on OWL ontology, so we can define the characteristics and behavior of various types of IoT devices as an integrated concept. The second is to define the concept of a rule as a specific language type, and to add, modify and delete a rule at any time as needed. Through the rule configuration in the adaptive system, we have shown that the rule defined in SWRL can provide flexibility and deeper concept expression function to adaptability to IoT environment.

An adaptive neuro-fuzzy approach using IoT data in predicting springback in ultra-thin stainless steel sheets with consideration of grain size

  • Jing Zhao;Lichun Wan;Mostafa Habibi;Ameni Brahmia
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.109-124
    • /
    • 2024
  • In the era of smart manufacturing, precise prediction of springback-a common issue in ultra-thin sheet metal forming- and forming limits are critical for ensuring high-quality production and minimizing waste. This paper presents a novel approach that leverages the Internet of Things (IoT) and Artificial Neural Networks (ANN) to enhance springback and forming limits prediction accuracy. By integrating IoT-enabled sensors and devices, real-time data on material properties, forming conditions, and environmental factors are collected and transmitted to a central processing unit. This data serves as the input for an ANN model, which is trained with crystal plasticity simulations and experimental data to predict springback with high precision. Our proposed system not only provides continuous monitoring and adaptive learning capabilities but also facilitates real-time decision-making in manufacturing processes. Experimental results demonstrate significant improvements in prediction accuracy compared to traditional methods, highlighting the potential of IoT and ANN integration in advancing smart manufacturing. This approach promises to revolutionize quality control and operational efficiency in the industry, paving the way for more intelligent and responsive manufacturing systems.

Resource Management Strategies in Fog Computing Environment -A Comprehensive Review

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.310-328
    • /
    • 2022
  • Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.

Advanced Real time IoT Eco-Driving Assistant System

  • Jouini, Anis;Cherif, Adnane;Hasnaoui, Salem
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.237-244
    • /
    • 2022
  • Eco-driving of vehicles today presents an advantage that aims to reduce energy consumption and limit CO2 emissions. The application for this option is possible to older vehicles. In this paper, we propose an efficient implementation for IoT (Internet of Things) system for controlling vehicle components that affect the quality of driving (acceleration, braking, clutch, gear change) via Smartphone using Wi-Fi and BLE as communication protocol. The user can see in real-time data from sensors that control driver action on vehicle driving systems such as acceleration, braking, and vehicle shifting through a web interface. Thanks to this communication, the user can control his driving quality and, hence, eco-driving can be achieved

A Study on Low Power Design of SVM Algorithm for IoT Environment (IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.73-74
    • /
    • 2017
  • SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

  • PDF

The influence of the IoT based healthcare user's experience value on the usage and continuous use intention -Focused on Xiaomi Mi band user in china- (IoT기반 헬스케어 사용자 경험가치가 사용량과 지속적 사용의도에 미치는 영향에 관한연구 -중국내 샤오미 미밴드 사용자를 중심으로-)

  • Shang, Meng;Shin, Yong Ho;Lee, Chul Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.689-706
    • /
    • 2016
  • Purpose: This study identifies causality in IoT-based healthcare user's experience(playful experience, economical experience), trust, usage, degree of dependence and continuous use intention, especially focused on chinese case. Methods: Face to face interviews was conducted for people who has experience in the use of the Xiaomi Mi band. This study used Partial Least Square(PLS) method with the questionnaires from the interview. Results: IoT-based healthcare users taking playful experience have a strong trust in a positive economic experiences. Also, the user recognizing the experience as an economic one shows stronger intention to use continuously. Conclusion: By getting healthcare users have more economic experience, they have continuous use intention of healthcare product. The empirical findings can be applied to the related companies strategy building.

Security and Privacy Issues of Fog Computing (포그 컴퓨팅 환경에서의 보안 및 프라이버시 이슈에 대한 연구)

  • Nam, Hyun-Jae;Choi, Ho-Yeol;Shin, Hyung-June;Kwon, Hyun-Soo;Jeong, Jong-Min;Hahn, Chang-Hee;Hur, Jun-Beom
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.257-267
    • /
    • 2017
  • With the development of IoT (Internet of Things) technology, the application area has been diversified and the number of users using this service also has increased greatly. Real time big data generated by many IoT devices is no longer suitable for processing in a cloud computing environment. To solve this issue, fog computing is suggested which minimizes response time and makes real time processing suitable. However, security requirement for new paradigm called fog computing is not established until now. In this paper, we define models for fog computing, and the security requirements for the defined model.

Redundant and Abnormal Data Processing Scheme in Large-scale IoT Environment (대규모 IoT 환경에서의 중복 및 비정상 데이터 처리 기법)

  • Kim, Min-Woo;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.109-110
    • /
    • 2019
  • 최근 IoT 환경에서는 고밀도로 노드가 분포되어진다. 이러한 센서 노드들은 데이터 전송 시 혼잡을 초래하는 중복 데이터를 생성하여 데이터의 정확도를 저하시킨다. 이에 따라 본 연구에서는 데이터 집중으로 인해 발생하는 네트워크의 정체 문제를 해결하기 위해 제안 기법은 사 분위(Interquatile, IRQ) 분석과 코사인 유사도 함수를 통해 데이터의 이상치와 중복성을 측정하여 중복 데이터 및 특이치를 제거한다. 본 연구를 통하여 최적의 데이터 전송을 통하여 IoT의 통신 성능을 향상시킬 수 있으며 결과적으로 데이터 감소율, 네트워크 수명 및 에너지의 효율성을 높일 수 있다.

  • PDF

Design and Implementation of Smart Mask based on IoT (IoT 기반의 스마트 마스크 설계 및 구현)

  • Wang, Yi;Kim, Hyenki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Recently, the market for masks has been growing due to air pollution, sun protection, pollen allergies and other reasons. In addition, the demand for masks has increased dramatically due to the new coronavirus from 2020, and masks are still one of the necessities of life. Although the reliance on masks is increasing, there are many inconveniences associated with wearing masks for long periods of time. At the same time, technology is developing rapidly, and the demand for smart wearable devices is increasing. Therefore, at the moment when the fourth industrial revolution is underway, combining people's common necessities with IoT technology to bring new convenient experiences to people is an important direction for future technology development and product development. In this study, smart masks were designed and implemented using IoT(Internet of Things) technology. The mask uses a microcomputer Adafruit circuit playground express, using the microcomputer's LED, optical sensors, can be in the dark place light, and through the temperature sensor real-time grasp of body temperature changes. If the body temperature rises above normal, the LED will turn "on" and activate the voice sensor to warn yourself and others around you.

A Study on Intelligent Edge Computing Network Technology for Road Danger Context Aware and Notification

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.183-187
    • /
    • 2020
  • The general Wi-Fi network connection structure is that a number of IoT (Internet of Things) sensor nodes are directly connected to one AP (Access Point) node. In this structure, the range of the network that can be established within the specified specifications such as the range of signal strength (RSSI) to which the AP node can connect and the maximum connection capacity is limited. To overcome these limitations, multiple middleware bridge technologies for dynamic scalability and load balancing were studied. However, these network expansion technologies have difficulties in terms of the rules and conditions of AP nodes installed during the initial network deployment phase In this paper, an intelligent edge computing IoT device is developed for constructing an intelligent autonomous cluster edge computing network and applying it to real-time road danger context aware and notification system through an intelligent risk situation recognition algorithm.