A Study on Low Power Design of SVM Algorithm for IoT Environment

IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구

  • Song, Jun-Seok (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Sang-Young (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Song, Byung-Hoo (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Kyung-Tae (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Youn, Hee-Yong (Dept. of Software, Sungkyunkwan University)
  • 송준석 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 김상영 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 송병후 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 김경태 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 윤희용 (성균관대학교 소프트웨어대학 소프트웨어학과)
  • Published : 2017.01.10

Abstract

SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

Keywords