• Title/Summary/Keyword: IoT (internet of things)

Search Result 1,917, Processing Time 0.036 seconds

Development of Equipment Control System based on DB Access Method for Industrial IoT (Industrial IoT를 위한 데이터베이스 접근 기반 장비 제어 시스템 개발)

  • Cho, Kyoung-woo;Jeon, Min-ho;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1142-1147
    • /
    • 2016
  • Recently, IoT(Internet of Things) has been extensively researching to provide intelligent services by fusing ICT. Especially with the advent of Germany's Industry 4.0, it is emphasized the importance of the industrial IoT to maximize the production capacity. Accordingly, a lot of efforts to spread the smart factory base of industrial IoT have continued domestically as well as abroad. But the current smart factory systems have controlled equipment using the data declared in the embedded systems. Therefore, it is difficult to control environment that lots of equipment is installed. In this paper, we proposed equipment control system based on data base access method for industrial IoT. This method controls the equipment using data base from parameter of equipment. Through experiments that the system apply to mold shot system with a number of variables, it is shown that the proposed method can efficiently control a number of devices.

Blockchain based SDN multicontroller framework for Secure Sat_IoT networks (안전한 위성-IoT 네트워크를 위한 블록체인 기반 SDN 분산 컨트롤러 구현)

  • June Beom Park;Jong Sou Park
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.141-148
    • /
    • 2023
  • Recent advancements in the integration of satellite technology and the Internet of Things (IoT) have led to the development of a sophisticated network ecosystem, capable of generating and utilizing vast amounts of big data across various sectors. However, this integrated network faces significant security challenges, primarily due to constraints like limited latency, low power requirements, and the incorporation of diverse heterogeneous devices. Addressing these security concerns, this paper explores the construction of a satellite-IoT network through the application of Software Defined Networking (SDN). While SDN offers numerous benefits, it also inherits certain inherent security vulnerabilities. To mitigate these issues, we propose a novel approach that incorporates blockchain technology within the SDN framework. This blockchain-based SDN environment enhances security through a distributed controller system, which also facilitates the authentication of IoT terminals and nodes. Our paper details the implementation plan for this system and discusses its validation through a series of tests. Looking forward, we aim to expand our research to include the convergence of artificial intelligence with satellite-IoT devices, exploring new avenues for leveraging the potential of big data in this context.

Enhancement of Semantic Interoper ability in Healthcare Systems Using IFCIoT Architecture

  • Sony P;Siva Shanmugam G;Sureshkumar Nagarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.881-902
    • /
    • 2024
  • Fast decision support systems and accurate diagnosis have become significant in the rapidly growing healthcare sector. As the number of disparate medical IoT devices connected to the human body rises, fast and interrelated healthcare data retrieval gets harder and harder. One of the most important requirements for the Healthcare Internet of Things (HIoT) is semantic interoperability. The state-of-the-art HIoT systems have problems with bandwidth and latency. An extension of cloud computing called fog computing not only solves the latency problem but also provides other benefits including resource mobility and on-demand scalability. The recommended approach helps to lower latency and network bandwidth consumption in a system that provides semantic interoperability in healthcare organizations. To evaluate the system's language processing performance, we simulated it in three different contexts. 1. Polysemy resolution system 2. System for hyponymy-hypernymy resolution with polysemy 3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and holonymy. In comparison to the other two systems, the third system has lower latency and network usage. The proposed framework can reduce the computation overhead of heterogeneous healthcare data. The simulation results show that fog computing can reduce delay, network usage, and energy consumption.

IoT Collaboration System Based on Edge Computing for Smart Livestock System (스마트 축사를 위한 에지 컴퓨팅 기반 IoT 협업 시스템)

  • Ahn, Chi-Hyun;Lee, Hyungtak;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.258-264
    • /
    • 2022
  • The smart farm for livestock, in which information and communication technology (ICT) is combined with livestock farm, is mostly based on the cloud computing paradigm. A cloud-based smart livestock farm has disadvantages such as increased response time, burden on cloud resource caused by the increased number of IoT sensors, traffic burden on the network, and lack of failure resilience mechanisms through collaboration with adjacent IoT devices. In this paper, with these problems in mind, we propose an IoT collaboration system based on edge computing. By using the relatively limited computing resources of the edge device to share the cloud's web server function, we aim to reduce the cloud's resources needed and improve response time to user requests. In addition, through the heartbeat-based failure recovery mechanism, IoT device failures were detected and appropriate measures were taken.

One Time Password-Based SEED Algorithm for IoT Systems (IoT 시스템을 위한 시간 동기화 방식 기반 SEED 알고리즘)

  • Lee, Sung-Won;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.766-772
    • /
    • 2016
  • Recent advances in networking and computers, especially internet of things (IoT) technologies, have improved the quality of home life and industrial sites. However, the security vulnerability of IoT technologies causes life-threatening issues and information leakage concerns. Studies regarding security algorithms are being conducted. In this paper, we proposed SEED algorithms based on one time passwords (OTPs). The specified server sent time data to the client every 10 seconds. The client changed the security key using time data and generated a ciphertext by combining the changed security key and the matrix. We applied the SEED algorithms with enhanced security to Linux-based embedded boards and android smart phones, then conducted a door lock control experiment (door lock & unlock). In this process, the power consumed for decryption was measured. The power consumption of the OTP-based algorithm was measured as 0.405-0.465W. The OTP-based algorithm didn't show any difference from the existing SEED algorithms, but showed a better performance than the existing algorithms.

Blockchain-based lightweight consensus algorithm (L-PBFT) for building trust networks in IoT environment (IoT 환경에서 신뢰 네트워크 구축을 위한 블록체인 기반의 경량 합의 알고리즘(L-PBFT))

  • Park, Jung-Oh
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.37-45
    • /
    • 2022
  • With the development of the Internet of Things (IoT), related network infrastructures require new technologies to protect against threats such as external hacking. This study proposes an L-PBFT consensus algorithm that can protect IoT networks based on a blockchain consensus algorithm. We designed a blockchain (private) model suitable for small networks, tested processing performance for ultra-small/low-power IoT devices, and verified stability. As a result of performance analysis, L-PBFT proved that at least the number of nodes complies with the operation of the consensus algorithm(minimum 14%, maximum 29%) and establishes a trust network(separation of secure channels) different from existing security protocols. This study is a 4th industry convergence research and will be a foundation technology that will help develop IoT device security products in the future.

A Study on the Lightweight Encryption Method for Secure MQTT Communication (안전한 MQTT 통신을 위한 경량 암호화 방법에 관한 연구)

  • Jeon, Yu-ran;Joo, Soyoung;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.82-84
    • /
    • 2022
  • In recent years, research has been actively conducted to solve overhead problems caused by the increase in the number of IoT devices. MQTT, one of the IoT lightweight protocols for resolving performance degradation in IoT environments, is standardized to enable efficient operation in many-to-many communication environments, but there is a security vulnerability as it does not provide encryption by default. Although TLS communication technology can be applied to solve these problems, it is difficult to meet IoT's lightweight power-saving requirements. This paper introduces the latest MQTT communication encryption trends and analyzes IoT applicability by comparing TLS encryption and payload encryption methods.

  • PDF

Multifunctional Interface Board for the implementation of IoT (사물 인터넷을 위한 다기능 인터페이스 보드 구현)

  • kim, Ka-Eul;Oh, Kang-Jin;Jo, Su-Min;Kwoen, Oh-Jun;Kim, Sun-Hyeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.530-532
    • /
    • 2015
  • Nowadays, it is animately studied on IoT(Internet of Things) on the strength of development of the short-range communications technology and smart device. In this paper, it made a interface board which is capable of short-range communications networks based on embedded linux and Android OS (operating system). and we also made a IoT sensor module and device driver module. This devices are easily separated and changed and also simply embodied in IoT, and It was implemented using the Android app that allows you to control the sensors.

  • PDF

The Access Control Platform of the IoT Service Using the CapSG (CapSG를 이용한 IoT 서비스 접근제어 플랫폼)

  • Kim, Jin-Bo;Jang, Deresa;Kim, Mi-Sun;Seo, Jae-Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.337-346
    • /
    • 2015
  • There is great need for efficient user rights management method to provide a flexible service on variety protocols, domains, applications of IoT environments. In this paper, we propose a IoT service platform with CapSG to provide efficient access control for IoT various services of the environment. CapSG uses a token including authentication and access rights to perform authentication and access control service entity providing services. In addition, the generated token for service management, delegation, revocation, and provides a function such as denied. Also, it provides functions such as generation, delegation, disposal and rejection for service token management. In this paper, it provides the flexibility and efficiency of the access control for various services require of the IoT because of it is available to access control specific domain service by using the token group for each domain and is designed to access control using specific service token of tokens group.

Lightweight Energy IoT Standard Protocol and Test Certification Procedure (에너지 IoT 표준 프로토콜 경량화 및 시험인증절차에 관한 연구)

  • Park, Myunghye;Kim, Younghyun;Myoung, Nogil;Kang, Sukyung;Eun, Changsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.129-135
    • /
    • 2020
  • The standardization of e-IoT (energy Internet of Things) communication and service, which is the energy field of energy, is to define the standard model and to demonstrate the practical model in order to take the lead and occupy the market where new market is created with the latest technology. In particular, detailed technical specifications are defined for developing a framework for IoT technology, the foundation technology of the 4th Industrial Revolution, securing interoperability through standardization, and operating a standard platform. In this paper, we propose a method for e-IoT standard protocol lightening and test certification procedure. The proposed method provides a product implementation method that can solve the problem of low power issue of e-IoT product in the future.