• Title/Summary/Keyword: Inverse Dynamic Method

Search Result 210, Processing Time 0.025 seconds

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

Development of Inverse Dynamic Controller for Industrial robots with HyRoHILS system

  • Yeon, Je-Sung;Kim, Eui-Jin;Lee, Sang-Hun;Park, Jong-Hyeon;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1972-1977
    • /
    • 2005
  • In this work, an inverse dynamic control method is developed to enhance tracking performance of industrial robots, which effectively deal with the nonlinear dynamic interferential forces. In general, the DFF (Dynamic Feed-Forward) controller and the CTM (Computed-Torque Method) controller are used for dynamic control for industrial robots. We study on the practical issues for implementing these inverse dynamic controllers via simulations and experiments. We develop the dynamic models in two different ways. One is a model designed through Newton-Euler method for real time computation and the other is a model designed through SimMechanics for evaluating the developed controller via simulations. We evaluate the nominal performance and robustness of the controller via simulations and experiments using serial 4-DOF HyRoHILS (Hyundai Robot Hardware-In-the-Loop Simulation) system. The results show that the inverse dynamic controller is effective and practically useful for a real control structure.

  • PDF

Inverse Dynamic Analysis of Constrained Multibody Systems Considering Friction Forces on Kinematic Joints (기구학적 조인트에서 마찰력을 고려한 구속 다물체계의 역동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Hwang, Yo-Ha;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2050-2058
    • /
    • 2000
  • A method for the inverse dynamic analysis of constrained multibody systems considering friction forces acting on kinematic joints is presented in this paper. The stiction and the sliding which represent zero and non-zero relative motions are considered during the inverse dynamic analysis. Actuating forces to control the position or the orientation of constrained multibody systems are usually calculated in the inverse dynamic analysis. An iterative procedure need to be employed to calculate the actuating forces when the friction is considered. Furthermore, the actuating forces are not uniquely determined during the stiction. These difficulties are resolved by the method presented in this paper.

A Case Study on Verification of Inverse Calculation of Dynamic Properties of Rockfill Zone using Microearthquake Records (댐 계측지진 활용 사력죤 물성 역산법 검증 사례 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.759-764
    • /
    • 2010
  • In this study, from the comparison of the results obtained by 3 dimensional dynamic analyses using the inverse-calculated properties and those by calculating using the real earthquake records, the inverse calculation method for obtaining the dynamic properties of rockfill materials was verified. The fundamental frequency of the dam was determined by analyzing the response spectrum of observed records. By repeated dynamic analyses for various shear moduli of rockfill material, the shear moduli in the rockfill zone that satisfy the relationship between the fundamental frequency obtained by analysis of the observed records and that by numerical analyses were determined. Using the determined shear moduli, the 3 dimensional dynamic analyses for the dam were carried out and the result were compared with the real response characteristics on the crest of the dam.

  • PDF

Dynamic Stress Analysis of joint by Practical Dynamic Load History (실하중 이력에 의한 조인트의 동적강도해석)

  • ;;;Akira Simamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

Searching for the Steady State of Unstable Link Structures by using Reduced Dimension Technique (차원 저감화기법을 이용한 불안정 링크구조물의 안정경로 탐색)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.39-48
    • /
    • 2004
  • Generally, a structural system with large inextensional deformations, or in other words, non-strained deformation is called as 'Unstable Structure', Truss-linked structures, cable structures, membrane structures and movable structures as foldable space structures etc, are included in this category. In this paper, a dynamic analysis method for unstable structural systems is presented. Governing equations for dynamic analysis of unstable truss structures with inextensional displacements are derived. Because of singularity of inverse matrixin in practical analysis of unstable structure, the generalized inverse matrix is Introduced to resolve the singular problem. Also, the RREF technique is used to get the inextensional displacement mode. Two unstable truss structures are analyzed by using presented method. Damping is not considered. From the given results, it is known that proposed method is useful to figure out the dynamic behavior of unstable truss structures.

  • PDF

Inverse Dynamic Analysis of Mechanical Systems Using the Velocity Transformation Technique (속도변환기법을 이용한 기계시스템의 역동학적 해석)

  • Lee, Byeong-Hun;Yang, Jin-Saeng;Jeon, U-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3741-3747
    • /
    • 1996
  • This paper presents a method for the inverse dynamic anlaysis of mechanical systems. Actuating forces(or torques) depending on the driving constraints are analyzed in the relative coordinate space using the velocity transformation technique. A systematic method to compose the inverse velocity transformation matrix, which is used to determine the joint reaction forces, is proposed. Two examples are taken to verify the method developed here.

An Inverse Dynamic Analysis of Lower Limbs During Gait (보행 중 하지 관절의 역동역학 해석)

  • 송성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • An inverse dynamic model of lower limbs is presented to calculate joint moments during gait. The model is composed of 4 segments with 3 translational joints and 12 revolute joints. The inverse dynamic method is based on Newton-Euler formalism. Kinematic data are obtained from 3 dimensional trajectories of markers collected by a motion analysis system. External forces applied on the foot are measured synchronously using force plate. The use of developed model makes it possible to calculate joint moments for variation of parameters.

Inverse dynamic analysis of flexible robot arms with multiple joints (다관절 유연 로보트 팔의 역동력학 해석)

  • 김창부;이승훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.254-259
    • /
    • 1992
  • In this paper, we propose an optimal method for the tracking a trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint equations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation of flexible planner manipulator is presented.

  • PDF

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.