• Title/Summary/Keyword: Inverse Analysis Method

Search Result 778, Processing Time 0.035 seconds

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

Electrical Characteristic of AI/AIN/GaAs MIS capacitor Fabricated by Reactive Sputtering Method for the (NH4)2S Treatment (반응성 스퍼터링법으로 AI/AIN/GaAs 커패시터 제조시 (NH4)2S 처리에 따른 전기적 특성)

  • Chu, Soon-Nam;Kwon, Jung-Youl;Park, Jung-Cheul;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • In MIS capacitor structure, we have studied the electrical properties in Ammonium Sulfide solution treatment while AIN thin film as a insulator is being formed by reactive sputtering method. The deposition process conditions of AIN thin film we temperature $250^{\circ}C$, DC Power 150 W, pressure 5 mTorr and 8 sccm(Ar : 4 sccm, $N_{2}$ : 4 sccm). The surface of GaAs was treated with Ammonium Sulfide solution, it was shown the leakage current was less than $10^{-8}\;A/cm^{2}$. The deep depletion phenomena of inverse area with treating Ammonium Sulfide solution in C-V analysis was improved as compared the condition of without Ammonium Sulfide solution and hysteresis property as well.

Effective Inverse Matrix Transformation Method for Haptic Volume Rendering (햅틱 볼륨 렌더링을 위한 효과적인 역행렬 계산법)

  • Kim, Nam-Oh;Min, Wan-Ki;Jung, Won-Tae;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.183-186
    • /
    • 2007
  • Realistic deformation of computer simulated anatomical structures is computationally intensive. As a result, simple methodologies not based in continuum mechanics have been employed for achieving real time deformation of virtual reality. Since the graphical interpolations and simple spring models commonly used in these simulations are not based on the biomechanical properties of tissue structures, these "quick and dirty"methods typically do not accurately represent the complex deformations and force-feedback interactions that can take place during surgery. Finite Element(FE) analysis is widely regarded as the most appropriate alternative to these methods. However, because of the highly computational nature of the FE method, its direct application to real time force feedback and visualization of tissue deformation has not been practical for most simulations. If the mathematics are optimized through pre-processing to yield only the information essential to the simulation task run-time computation requirements can be drastically reduced. To apply the FEM, We examined a various in verse matrix method and a deformed material model is produced and then the graphic deformation with this model is able to force. As our simulation program is reduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time.

  • PDF

Guided wave field calculation in anisotropic layered structures using normal mode expansion method

  • Li, Lingfang;Mei, Hanfei;Haider, Mohammad Faisal;Rizos, Dimitris;Xia, Yong;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • The guided wave technique is commonly used in structural health monitoring as the guided waves can propagate far in the structures without much energy loss. The guided waves are conventionally generated by the surface-mounted piezoelectric wafer active sensor (PWAS). However, there is still lack of understanding of the wave propagation in layered structures, especially in structures made of anisotropic materials such as carbon fiber reinforced polymer (CFRP) composites. In this paper, the Rayleigh-Lamb wave strain tuning curves in a PWAS-mounted unidirectional CFRP plate are analytically derived using the normal mode expansion (NME) method. The excitation frequency spectrum is then multiplied by the tuning curves to calculate the frequency response spectrum. The corresponding time domain responses are obtained through the inverse Fourier transform. The theoretical calculations are validated through finite element analysis and an experimental study. The PWAS responses under the free, debonded and bonded CFRP conditions are investigated and compared. The results demonstrate that the amplitude and travelling time of wave packet can be used to evaluate the CFRP bonding conditions. The method can work on a baseline-free manner.

Comparison of Damping Matrix Estimation Methods for Model Updating (모형개선을 위한 감쇠행렬 추정법의 비교)

  • Lee, Gun-Myung;Ju, Young-Ho;Park, Mun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.923-930
    • /
    • 2010
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping, and in the second stage, damping matrices are estimated with the mass and stiffness matrices fixed. Three methods to estimate damping matrices for this purpose are proposed in this paper. The methods include one for proportional damping systems and two for non-proportional damping systems. Method 1 utilizes orthogonality of normal modes and estimates damping matrices using the modal parameters extracted from the measured responses. Method 2 estimates damping matrices from impedance matrices which are the inverse of FRF matrices. Method 3 estimates damping using the equation which relates a damping matrix to the difference between the analytical and measured FRFs. The characteristics of the three methods are investigated by applying them to simulated discrete system data and experimental cantilever beam data.

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

The Impact of Capital Structure on Firm Value: A Case Study in Vietnam

  • LUU, Duc Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.287-292
    • /
    • 2021
  • The article analyzes the impact of capital structure on the firm value of chemical companies listed on the stock market of Vietnam. Data was collected from the financial statements of 23 chemical firms listed on the Vietnam stock market from 2012 to 2019. Quantitative research method with regression model according to OLS, FEM, REM method is used; FGLS method is used to overcome the model's defects. In this research, firm value (Tobin's Q) is a dependent variable. Capital structure (DA), Return on assets (ROA), Asset turnover (AT), fixed assets (TANG), Solvency (CR), Firm size (SZ), Firm Age (AGE), and revenue growth rate (GR) are independent variables in the study. The analysis results show that the capital structure of firms in the chemical industry listed on the Vietnam stock market has an inverse correlation with firm value. Besides, firms with greater asset turnover, business size, and number of years of operation have lower firm value. This article helps corporate executives improve corporate value by adjusting their capital structure properly. Chemical firms adjusted their capital structure in the direction of gradually decreasing the debt ratio and gradually increasing equity. Firms use high debt, which has the effect of reducing the firm value of firms in the chemical industry.

The Effect of Fiber Volume Fraction on the Tension Softening Behavior of Steel Fiber-Reinforced Ultra High Strength Concrete (섬유혼입률이 강섬유보강 초고강도 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Hong, Ki-Nam;Han, Sang-Hoon;Kim, Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The influence of steel fiber volume on the tension softening behavior in steel fiber-reinforced ultra high strength concrete was investigated. Three-point bending test (TPBT) with notched beams was performed and inverse analysis method by Uchida et al. was adopted to obtain the tension softening behaviors from the results of TPBT. It could be found that the intial stiffness was constant regardless of steel fiber volume, the increase of steel fiber volume fraction made the tensile strength higher, but all of the curves converged on an asymptote with a crack width. It was proposed the equation of softening curve expressed by combination of plastic behavior part and exponential descending behavior part considering the steel fiber volume fraction and $\omega_0$, which is corresponding to the maximum crack width of plastic area. Thereafter, the crack propagation analysis using finite element method with smeared crack model was also carried out and it was confirmed that the proposed equation had a good agreement with the experimental results.

Analysis on a Minimum Infinity-norm Solution for Kinematically Redundant Manipulators

  • Insoo Ha;Lee, Jihong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.130-139
    • /
    • 2002
  • In this paper, at first, we investigate existing algorithms for finding the minimum infinity-norm solution of consistent linear equations and then propose a new algorithm. The proposed algorithm is intended to includes the advantages of computational efficiency as well as geometric explicitness. As a practical application example, optimum trajectory planning for redundant robot manipulators is considered. Also, an efficient approach avoiding discontinuity in trajectory is proposed by resolving the non-uniqueness problem of minimum infinity-norm solution. To be specific, the proposed method for checking possible discontinuity does not need any other algorithms in checking the possibility of discontinuity while previous work needs specially designed checking courses. To show the usefulness of the proposed techniques, an example calculating minimum infinity-norm solution for comparing the computational efficiency as well as the trajectory planning for a redundant robot manipulator are included.

Sub-sampling Technique to Improve the Measurement Speed of White Light Scanning Interferometry (백색광 주사 간섭계의 측정 속도 개선을 위한 서브 샘플링 기법 연구)

  • Chyun, In-Bum;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.999-1006
    • /
    • 2014
  • In this investigation, we explain the sub-sampling technique of white light scanning interferometry (WLSI) to improve the measurement speed. In addition to the previous work using Fourier domain analysis, several methods to extract the height from the correlogram of WLSI are described with the sub-sampling technique. Especially, Fourier-inverse Fourier transformation method adopting sub-sampling technique is proposed and the phase compensation technique is verified with simulation and experiments. The main advantage of sub-sampling is to speed up the measurements of WLSI but the precision such as repeatability is slightly poor. In case of measuring the sample which has high height step or difference, the proposed technique can be widely used to reduce the measurement time.